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Abstract 

Probabilistic design, such as reliability-based design and robust design, offers tools for 

making reliable decisions with the consideration of uncertainty associated with design 

variables/parameters and simulation models. Since a probabilistic optimization often 

involves a double-loop procedure for the overall optimization and iterative probabilistic 

assessment, the computational demand is extremely high. In this paper, the sequential 

optimization and reliability assessment (SORA) is developed to improve the efficiency of 

probabilistic optimization. The SORA method employs a single-loop strategy with a 

serial of cycles of deterministic optimization and reliability assessment. In each cycle, 

optimization and reliability assessment are decoupled from each other; the reliability 

assessment is only conducted after the deterministic optimization to verify constraint 

feasibility under uncertainty. The key to the proposed method is to shift the boundaries of 

violated constraints (with low reliability) to the feasible direction based on the reliability 

information obtained in the previous cycle. The design is quickly improved from cycle to 

cycle and the computational efficiency is improved significantly. Two engineering 

applications, the reliability-based design for vehicle crashworthiness of side impact and 

the integrated reliability and robust design of a speed reducer, are presented to 

demonstrate the effectiveness of the SORA method. 



1 Introduction 

Probabilistic design methods have been developed and applied in engineering 

design. The typical probabilistic design methods include reliability-based design [1-4] 

and robust design [5-9]. Reliability-based design emphasizes high reliability of a design 

by ensuring the probabilistic constraint satisfaction at desired levels, while robust design 

focuses on making the design inert to the variations of system input through optimizing 

mean performance of the system and minimizing its variance simultaneously. One 

important task of a probabilistic design is uncertainty analysis, through which we 

understand how much the impact of the uncertainty associated with the system input is on 

the system output by identifying the probabilistic characteristics of system output. We 

then perform synthesis (optimization) under uncertainty to achieve the design objective 

by managing and mitigating the effects of uncertainty on system output (system 

performance) [10].  

In spite of the benefits of probabilistic design, one of the most challenging issues 

for implementing probabilistic design is associated with the intensive computational 

demand of uncertainty analysis. To capture the probabilistic characteristics of system 

performance at a design point, we need to perform a number of deterministic analyses 

around the nominal point, either using a simulation approach (for instance, Monte Carlo 

simulation) or other probabilistic analysis methods (such as reliability analysis). Many 

researches have been concentrating on developing practical means to make probabilistic 

design computationally feasible for complex engineering problems.   

Our focus in this study is to develop an efficient probabilistic design approach to 

facilitate design optimizations that involve probabilistic constraints. Reliability-based 
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design is such type of probabilistic optimization problems in which design feasibility is 

formulated as reliability constraints (or the probability of constraint satisfaction).  The 

conventional approach for solving a probabilistic optimization problem is to employ a 

double-loop strategy; the analysis and the synthesis are nested in such a way that the 

synthesis loop (outer loop) performs the uncertainty analysis (inner loop for reliability 

assessment) iteratively for meeting the probabilistic objective and constraints. As the 

double-loop strategy may be computationally infeasible, various techniques have been 

developed to improve its efficiency. These techniques can be classified into two 

categories: one is through improving the efficiency of uncertainty analysis methods, for 

example, the methods of Fast Probability Integration [11] and Two-Point Adaptive 

Nonlinear Approximations [3]; the other is through modifying the formulation of 

probabilistic constraints, for example, the performance measure approach [12]. A 

comprehensive review of various feasibility modeling approaches for design under 

uncertainty is provided in Du and Chen [13]. 

Even though the improved uncertainty analysis techniques and modifications of 

problem formulation have lead to improved efficiency of probabilistic optimization, the 

improvement is quite limited due to the nature of the double loop strategy.  Recent years 

have seen preliminary studies on a new type of method – the single loop method [14-16] 

that avoids the nested loops of optimization and reliability assessment. In [14], the 

reliability constraints are formulated as deterministic constraints that approximate the 

condition of the Most Probable Point (MPP) [17], a concept used for reliability 

assessment. Since this method does not conduct the expensive MPP search, its efficiency 

is very high. However, there is no guarantee that an active reliability constraint converges 
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to its actual MPP; the optimal solution may not satisfy the required reliability. In [15], a 

method using “approximately equivalent deterministic constraints” was developed.  The 

method creates a link between a probabilistic design and a safety-factor based design. 

With this method, only deterministic design variables are considered and the uncertainties 

can be only associated with (uncontrollable) design parameters. In [16], optimization and 

reliability assessment are decoupled in each cycle. In optimization, reliability constraints 

are linearlized around the MPPs obtained in the reliability assessment of the previous 

cycle. The linearization improves the efficiency of overall optimization but may also lead 

to convergence difficulties.  Although the single loop strategy appears promising as no 

nested synthesis and uncertainty analysis loops are involved , the above methods are 

relatively new and their applicability to various design applications is yet to be verified.    

In this paper, we present a new probabilistic design method, the Sequential 

Optimization and Reliability Assessment (SORA) method that we believe can 

significantly improve the efficiency of probabilistic optimization.  Our method employs a 

single loop strategy which decouples optimization synthesis and uncertainty analysis.  As 

an integral part of the proposed strategy, we employ the formulation of performance 

measure for the reliability constraints along with an efficient inverse MPP search 

algorithm. The SORA method has the capability to deal with both deterministic and 

random design variables with the presence of random parameters. In this paper, we will 

first review a few commonly used strategies of probabilistic design in Section 2.  The 

review will lay the foundation for our proposed method, SORA, introduced in Section 3.  

In Section 4 two engineering examples are used to illustrate the effectiveness of the 

proposed method. Section 5 is the closure, which highlights the effectiveness of the 
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proposed method and provides discussions on its applicability under different 

circumstances.  

 

2 Probabilistic Optimization Strategies 

In this section, we present two commonly used formulations under the double-loop 

strategy, which lays the foundation for our proposed method.  Results from these two 

formulations are compared with those from our proposed method in case studies. 

2.1 Double-Loop Strategy with Probabilistic Formulation 

A typical model of a probabilistic design is given by: 

Minimize:  ) , ,( PXdf
Design Variable } ,{ xµd=DV     (1) 

 Subject to: Prob{ ( ,  ,  ) 0}i ig R≤ ≥d X P , i = 1, 2, …, m, 
 

where f is an objective function, d is the vector of deterministic design variables, X is the 

vector of  random design variables, P is the vector of random design parameters, gi(d, X, 

P) (i = 1, 2, …, m) are constraint functions, Ri (i = 1, 2, …, m) are desired probabilities of 

constraint satisfaction, and m is the number of constraints. The design variables are d and 

the means (µx) of the random design variables X. Note that the following rules of 

symbols are used to differentiate the representation of random variables, deterministic 

variables, and vectors. A capital letter is used for a random variable, a lower case letter 

for a deterministic variable or a realization of a random variable, and a bold letter is used 

for a vector. For example, X stands for a random variable and x for a deterministic 

variable or a realization of random variable X; X denotes a vector of random variables 

while x denotes a vector of deterministic variables. 

 4



In the above probabilistic design model, the design feasibility is formulated as the 

probability (Prob) of constraint satisfaction ( ,  ,  ) 0g ≤d X P  less than or equal to a desired 

probability R. As shown in Fig. 1, the probability of  is the area 

underneath the curve of probability density function (PDF) of g for g≤0, and this area 

should be bigger than or equal to R. 

( ,  ,  ) 0g ≤d X P

 

Insert Fig. 1 here. 

 

The probability of constraint satisfaction is also called reliability.  Analytically, the 

reliability is given by the integral 

 , (2) , ( , , ) 0
Prob{ ( ,  ,  ) 0} ( , )

g
g h

≤
≤ = ∫ ∫ X Pd X P

d X P x p x pL d d

where  is the joint probability density function of X and P, and the probability 

is evaluated by the multidimensional integration over the region . It is 

generally difficult or even impossible to perform the multidimensional integration in Eqn. 

(2). One alternative method to evaluate the integration is Monte Carlo simulation. 

However, when the reliability is very high (approaching 1.0), the computational effort of 

Monte Carlo Simulation is prohibitively expensive [13].  Hasofer and Lind [17] proposed 

the concept of the Most Probable Point (MPP) in the structural reliability field to 

approximate the integration.   

, ( , )hX P x p

( ,  ,  ) 0g ≤d X P

With the MPP approach, the random variables  are transformed into an 

independent and standardized normal space .  The MPP is formally defined in 

the standardized normal space as the minimum distance point on the constraint boundary 

) ,( PX

),( PX UU
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0) , ,() , ,( == PX UUdPXd gg  to the origin. The minimum distance β is called reliability 

index. When the First Order Reliability Method (FORM) [17] is used, the reliability is 

given by 

 Prob{ ( ,  ,  ) 0} ( ),g β≤ = Φd X P  (3) 

where  is the standard normal distribution function. Finding the MPP and the reliability 

index is a minimization problem, which usually involves an iterative search process.  

Therefore, the reliability assessment itself is an optimization problem. For details about 

the MPP based method, refer to [18]. 

Φ

When the probability formulation in design model (1) is directly used to solve the 

problem, the method is called “double-loop method with probability formulation” 

(DLM_Prob) [12, 19, 20].  The efficiency of this type of method is usually low since it 

employs nested optimization loops to first evaluate the reliability of each probabilistic 

constraint and then to optimize the design objective subject to the reliability 

requirements.  

 

2.2 Double-Loop Strategy with Percentile Formulation 

An equivalent model to (1) is given by [12, 15, 21] 

 Minimize:  ) , ,( PXdf
} ,{ xµd=DV               (4) 

 Subject to: ( ,  ,  ) 0R
ig ≤d X P , i = 1, 2, …, m, 

 
where  is the R- percentile of , namely, Rg ) , ,( PXdg

 Prob{ ( ,  ,  ) }Rg g R≤ =d X P  (5) 
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Eqn. (5) indicates that the probability of  less than or equal to the R- 

percentile  is exactly equal to the desired reliability R. The concept is demonstrated in 

Fig. 2. If the shaded area is equal to the desired reliability R, then the left ending point 

 on the g axis is called the R - percentile of function g.  From Fig. 2 we see that, if 

, it indicates that 

) , ,( PXdig

Rg

Rg

0Rg ≤ Prob{ ( ,  ,  ) 0}ig R≤ ≥d X P , i.e., the constraint is feasible. 

Therefore, the original constraints that require the reliability assessment are now 

converted to constraints that evaluate the R -percentile.   

Insert Fig. 2 here. 

 

The percentile  can be evaluated by the inverse MPP method.  When using 

FORM, given the desired reliability R, the reliability index β is first calculated by  

Rg

    (6) )(1 R−Φ=β

The inverse MPP problem is formulated as shown in the following minimization 

model,   

  (7) 
⎩
⎨
⎧

= ,)( subject to
)( minimize

2/1 βUU
U

T

g

where . ) ,( PX UUU =

Using an inverse MPP search algorithm, the optimum solution MPP  can be 

identified and the R percentile is evaluated by 

MPPu

 .   (8) ) ,()( MPPMPPMPP
R ggg pxu ==

To some extent, the evaluation of Eqn. (8) can be viewed as deterministic by 

substituting the MPP values (  and  in the original random space) directly into MPPx MPPp 
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the g function. Since applying the inverse MPP method also involves iterative 

procedures, we call the method for solving model (4) “the double-loop method with 

percentile formulation” (DLM_Per). It is also called performance measure approach 

(PMA) in [12, 21].  

To distinguish the type of function evaluations for the probabilistic constraints 

(Eqns. (3) or (8)) from those for the original constrain functions , we call the 

function evaluations for the reliabilities 

) , ,( PXdg

Prob{ ( ,  ,  ) 0}ig ≤d X P  or the R-percentile 

 “probabilistic function evaluations” and those for the 

original function  “the performance function evaluations” or simply “the 

function evaluations”.  

) ,()( MPPMPPMPP
R ggg pxu ==

) , ,( PXdg

For both DLM_Prob and DLM_Per, to fulfill the probabilistic optimization, the 

outer loop optimizer calls the objective function and each probabilistic constraint 

repeatedly.  Therefore, the total number of function evaluations can be very huge. For 

instance, assume that the outer optimization loop needs 100 probabilistic function 

evaluations and that there are 10 probabilistic constraints, if each probability evaluation 

needs 50 function evaluations on average, the total number of function evaluations would 

be 100×10×50=50,000!  

 

 
3 Sequential Optimization and Reliability Assessment (SORA) Method 

To improve the efficiency of probabilistic optimization, we adopt in this work the 

strategy of “serial single loops” [14-16] to develop a sequential optimization and 

reliability assessment (SORA) method. Our proposed method is different from the 
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existing single loop methods in the way we establish equivalent deterministic constraints 

from the probabilistic constraints.  We also employ an efficient inverse MPP search 

algorithm as an integral part of the proposed procedure.    

 

3.1   The Measures Taken in Developing the SORA Method 

In developing the SORA method, several measures have been taken, including 

evaluating the reliability only at the desired level (R-percentile), using an efficient and 

robust inverse MPP search algorithm, and employing sequential cycles of optimization 

and reliability assessment. 

(1) Evaluating the reliability only at the desired level (R-percentile) 

It is noted that in probabilistic optimization, the closer the reliability 

 is to 1.0, the more computational effort is required. For using the 

MPP based methods, the higher reliability means larger search region in the standardized 

normal space to locate the MPP and it is very likely that more function evaluations are 

required. In probabilistic optimization with multiple constraints, some constraints may 

never be active and their reliabilities are extremely high (approaching 1). Although these 

constraints are the least critical, the evaluations of these reliabilities will unfortunately 

dominate the computational effort in the probabilistic design process if the DLM_Prob 

strategy (Section 2.1) is employed. Our solution to this problem is to perform the 

reliability assessment only up to the necessary level, represented by the desired reliability 

R.  

P{ ( ,  ,  ) 0}ig ≤d X P

To this end, we use the percentile formulation for probabilistic constraints with the 

SORA method. Based on Eqn. (8), the design model (5) of DLM_Per is rewritten as 
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Minimize:  ) ,( xµdf
} ,{ xµd=DV                (9) 

 Subject to: ( ,  ,  ) 0i MPPi MPPig ≤d x p , i = 1, 2, …, m 

This model establishes the equivalence between a probabilistic optimization and a 

deterministic optimization since the original constraint functions  are 

used to evaluate design feasibility using the inverse MPPs corresponding to the desired 

reliabilities R

) , ,( MPPiMPPiig pxd

i.  Fig. 3 is used to further explain how a probabilistic constraint is 

converted to an equivalent deterministic constraint.  In this illustrative example, only two 

random design variables X1 and X2 are involved; there are no random parameters P.  Two 

coordinate systems are plotted in Fig. 3; one is the design space (the space composed of 

design variables µx1 and µx2), and the other is the random space (X1 and X2).  If we do not 

consider any uncertainty, curve 1 2( ,  ) 0x xg µ µ =  is the constraint boundary in the 

deterministic design. When we consider uncertainty, the constraint boundary 

becomes { }1 2Prob g( ,  ) 0X X ≤ = R .  Since in a probabilistic design, the required reliability 

R is often much higher than the reliability achieved by a deterministic design, the 

constraint of a probabilistic design is stricter than a deterministic design. Geometrically, 

the feasible region of a probabilistic design is narrower than the one of a deterministic 

design; in other words, the feasible region of a probabilistic design is a reduced region in 

comparison with a deterministic feasible design.  Determining the probabilistic constraint 

boundary { }1 2Prob g( ,  ) 0X X ≤ = R  needs a reliability analysis. Since 

{ }1 2Prob g( ,  ) 0X X ≤ = R  is equivalent to ( ,  ,  ) 0MPP MPPg =d x p , where (xMPP, pMPP) is 

the inverse MPP point, the evaluation of a probabilistic constraint at design point (µx1, 

µx2) is equivalent to evaluating the deterministic constraint at the inverse MPP point, i.e., 
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) , ,( MPPMPPg pxd .  As shown in Fig. 3, to maintain the probabilistic constraint 

, the Inverse MPP corresponding to the design point (µ0) , ,( =MPPMPPg pxd x1, µx2) on the 

probabilistic constraint boundary should be exactly on the deterministic constraint 

boundary 1 2( ,  ) 0x xg µ µ = .  Therefore, to maintain the design feasibility, the inverse MPP 

of each probabilistic constraint should be within the deterministic feasible region. 

Insert Fig. 3 here. 

 (2) Using an efficient and robust inverse MPP search algorithm 

In SORA, we employ an efficient MPP based percentile evaluation method (inverse 

MPP search algorithm) of which principle is detailed in [22]. This new inverse MPP 

search algorithm combines several techniques, such as using the steepest decent direction 

as the search direction, performing an arc search if no progress is made along the steepest 

decent direction, and adopting the adaptive step size for numerical derivative evaluation. 

This search algorithm is considered robust since it is suitable for any continuous 

constraint functions (including non-concave and non-convex functions) and continuous 

distributions of uncertainty.  

(3) Employing sequential cycles of optimization and reliability assessment 

It is noted that in a probabilistic design, most of the computations are used for 

reliability assessments. Therefore, to improve the overall efficiency of probabilistic 

optimization we need to reduce the number of reliability assessments as much as 

possible. The essence is to move the design solution as quickly as possible to its optimum 

so as to reduce the needs for locating MPPs. To achieve this, SORA employs a serial of 

cycles of optimization and reliability assessment. Each cycle includes two parts, one part 

is the (deterministic) optimization and another part is the reliability assessment. The 
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reliability assessment refers to the evaluation of R-percentile corresponding to a given 

reliability R. In each cycle, at first we solve an equivalent deterministic optimization 

problem, which is formulated by the information of the inverse MPPs obtained in the last 

cycle. Once the design solution is updated, we then perform reliability assessment to 

identify the new inverse MPPs and to check if all the reliability requirements are 

satisfied. If not, we use the current inverse MPPs to formulate the constraint for the 

deterministic optimization in the next cycle in which the constraint boundary will be 

shifted to the feasible region by changing the locations of design variables. Using this 

strategy, the reliability of constraints improves progressively and the solution to a 

probabilistic design can be found within a few cycles, and the need for searching MPPs 

can be reduced significantly.  Detailed flowchart and procedure are provided in Section 

3.2. 

 
3.2 SORA Flowchart and Procedure 

The flowchart of the SORA method is provided in Fig. 4.  For the deterministic 

optimization in the first cycle, since there is no information about the MPPs, the values of 

xMPP and pMPP are set as the means of the random design variables and the random 

parameters, respectively. The following is the deterministic optimization model in the 

first cycle of probabilistic optimization,   

Minimize:  ( ,  ,  )f x pd µ µ
} ,{ xµd=DV        (10) 

 Subject to: ( ,  ,  ) 0ig ≤x pd µ µ , i= i = 1, 2, …, m 
 
 

Insert Fig. 4 here. 
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To demonstrate the strategy of separating (deterministic) optimization and 

reliability assessment while ensuring both segments work together to bring the design 

solution quickly to a feasible and optimal solution, we use the same illustrative plot (no 

deterministic design variables d and random parameters P) as shown in Fig. 3 for 

demonstration. We start our explanation for the first cycle and then extend the same 

principle to the kth cycle.  In the first cycle, after solving model (10) (deterministic 

optimization), some of the constraints may become active. For an active constraint g, the 

optimal point (1) (1) (1)
1 2 ( ,  x x x )µ µ=µ  is on the boundary of the deterministic constraint 

function .  When considering the randomness of X, as seen on the graph (Fig. 

5), the actual reliability (probability of constraint being feasible) is only around 0.5. After 

the deterministic optimization, the reliability assessment is implemented at the 

deterministic optimum solution 

) , ( px µµg

(1) (1) (1)
1 2( ,  x x x )µ µ=µ   to locate the (inverse) MPP that 

corresponds to the desired R level. As one can expect, the MPP (1)
MPPx  of constraint 

 will fall outside (to the left of) the deterministic feasible region. From our 

discussion in Section 3.1, we know that to ensure the feasibility of a probabilistic 

constraint, the inverse MPP corresponding to the R percentile should fall within the 

deterministic feasible region.  Therefore, when establishing the equivalent deterministic 

optimization model in Cycle 2, the constraints should be modified to shift the MPP at 

least onto the deterministic boundary to help insure the feasibility of the probabilistic 

constraint. If we use s to denote the shifting vector, the new constraint in the 

deterministic optimization of the next cycle is formulated as 

) , ( px µµg

 ( )g 0− ≤xµ s  (11) 
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Insert Fig. 5 here. 

 

From Fig. 5, to ensure the MPP onto the deterministic boundary, we derive the 

shifting vector as 

 (1) (1) (1) (1) (1)
1 2 1 1 2 2( ,  ) ( ,  )MPP x MPP x MPPs s µ x µ x= = − = − −xs µ x . (12) 

Correspondingly, Eqn. (11) indicates that the location of the design variables ( ) 

in the deterministic optimization model needs to move further to the boundary of the 

probabilistic constraint to ensure feasibility under uncertainty. This shifted deterministic 

constraint boundary is shown in Fig. 5 by the dotted curve. If there are more than one 

probabilistic constraints, other constraint boundaries are also shifted towards the feasible 

region by the distance between the optimal point  and their own 

(inverse) MPPs accordingly. In the second cycle of probabilistic optimization, the new 

constraints form a narrower feasible region in comparison with the one in the first cycle 

as shown in the following optimization model: 

xµ

(1) (1) (2)
1 1( ,  x µ µ=µ )

Minimize:  ) ,( xµdf
} ,{ xµd=DV             (13) 

 Subject to: (2)( ,   ) 0g − ≤xd u s , 
where  

 (2) (1) (1)
MPP= −xs µ x  

After the optimization in Cycle 2, the reliability assessment of Cycle 2 is conducted 

to find the updated inverse MPPs and to check the design feasibility.  The reliabilities of 

those violated probabilistic constraints in Cycle 1 should improve remarkably using the 

proposed MPP shifting strategy.   If some probabilistic constraints are still not satisfied, 
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we repeat the procedure cycle by cycle until the objective converges and the reliability 

requirement is achieved when all the shifting distances become zero. 

As for the general case where deterministic design variables d and random design 

variables X as well as the random parameters P exist, deterministic design variables d 

can be considered as special random variables with zero variances and the sifting distance 

corresponding to d is zero. Since we have no means to control the random parameters P 

in the design, we could not use the same shifting treatment. However, considering model 

(9), we see that to maintain the reliability requirement, the deterministic constraint 

function should satisfy ( ,  ,  ) 0MPP MPPg ≤d x p . Therefore, for random parameters P we 

simply use the MPP  obtained in the previous cycle, such that MPPp 

 ( ,   ,  ) 0MPPg − ≤xd µ s p  (14) 

Based on the same strategy, we derive the general optimization model in Cycle k +1 

as 

Minimize:  ) , ,( px pµdf
} ,{ xµd=DV             (15) 

 Subject to: ( 1) ( )( ,   ,  ) 0k k
i i iMPPg +− ≤xd u s p , i = 1, 2, …, m, 

where  

   ( 1) ( ) ( )k k k
i
+ = −xs µ x iMPP

It is noted that since each probabilistic constraint has its own (inverse) MPP, each 

probabilistic constraint has its own shifting vector si.  

To further improve the efficiency, we also take the following measures: 1) The 

starting point for (inverse) MPP search in reliability assessment of the current cycle is 

taken as the (inverse) MPP obtained in the last cycle. Since the (inverse) MPPs of 

probabilistic constraints in two consecutive cycles are very close, using the (inverse) 

 15



MPP of last cycle gives a good initial guess of the (inverse) MPP in the next cycle, and 

hence reduces the computational effort for MPP search. 2) Similarly, the starting point of 

the optimization of one cycle is taken as the optimum point of the previous cycle. 3) 

After one cycle of optimization, if the design variables included in one probabilistic 

constraint do not change or have very small changes compared with those in the last 

cycle, the MPP in the current cycle will be the same as or very close to that in the last 

cycle. Therefore, it is unnecessary to search the MPP again for this probabilistic 

constraint in the reliability assessment that follows.   

The stopping criteria of the SORA method are as follows: 1) The objective 

approaches stable: the difference of the objective function between two consecutive 

cycles is small enough. 2) All the reliability requirements are satisfied. 

From the procedure of the SORA method we see that the reliability analysis loop 

(locating the inverse MPPs) is completely decoupled from the optimization loop and that 

in the optimization part, equivalent deterministic forms of constraints are used, taking the 

same form of the original constraint functions. As a result, it is easy to code and to 

integrate the reliability analysis with any optimization software. We also see that the 

design is progressively improved (the desired reliability is progressively achieved) in the 

proposed probabilistic design process. This helps a designer track the design process 

more efficiently. Since the SORA method requires much less optimization iterations and 

reliability assessments to converge, the overall efficiency is high. 

 
4 Applications 

Two engineering design problems are used to demonstrate the effectiveness of the 

SORA method. These two examples include the reliability-based design for vehicle 
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crashworthiness of side impact and the integrated reliability and robust design for the 

speed reducer of a small aircraft engine.  

4.1 Reliability-Based Design for Vehicle Crashworthiness of Side Impact 

The computational analysis of crashworthiness for vehicle impact has become a 

powerful and efficient tool to reduce the cost and development time for a new product 

that meets corporate and government crash safety requirements. Since the effects of 

uncertainties associated with the structure sizes, material properties, and operation 

conditions in the vehicle impact are considerably of importance, reliability based design 

optimization for vehicle crashworthiness has been gained increasing attention and has 

been conducted in automotive industries [23,24]. Typically, in a reliability-based design, 

the design feasibility is formulated as the reliability constraints while the design objective 

is related to the nominal value of the objective function. SORA is applied to the 

reliability-based design for vehicle crashworthiness of side impact based on global 

response surface models generated by Ford Motor Company. 

There are nine (9) random variables X1 – X9, representing sizes of the structure, 

material properties (X8 and X9), and two (2) random parameters P1 (Barrier height) and 

P2 (Barrier hitting position). 

The reliability-based design model is given in Fig. 6 
 

Insert Fig. 6 here. 
 

In this design model, q is the weight of the structure, F’s are abdomen load and 

pubic symphysis force, VC’s are viscous criteria, and D’s are rib deflections (upper, 

middle, and lower).  
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To verify the proposed method, in addition to the SORA method, the existing 

DLM_Prob and the DLM_Per strategies are also used to solve the problem. We consider 

two cases. In Case 1, all the desired reliabilities are set to R=0.9. This is the case used by 

Ford Motor Company. In Case 2, we use higher reliability, R=0.99865 which is 

equivalent to the safety index β=3. For all the three methods, the optimization algorithm 

is the sequential quadratic programming (SQP) and the reliability assessment is based on 

FORM with the inverse MPP search algorithm developed in [22]. 

1) Case 1 – Desired Reliability = 0.9 
 

The SORA method uses three cycles of sequential optimizations and reliability 

assessment to obtain the solution. The optimization history is given in Table 1. The 

method starts from a conventional deterministic optimization. The result under 

optimization in cycle 1 in Table 1 is the optimum solution for the deterministic 

optimization. It is noted that the objective (weight) reduces significantly from 29.172 kg 

(baseline design used as starting point) to 23.5054 kg. After the deterministic 

optimization, the reliability analysis is performed to locate the inverse MPP for each 

constraint and it is noted that the reliabilities are low for some constraints such as the 

deflection of low rib (mm)} 32Prob{ ≤lowD  and pubic force . 

Based on the result of the deterministic optimization and the information of the inverse 

MPPs, the constraints boundaries are shifted as formulated in Eqn. (14) and the feasible 

region is rearranged (reduced towards feasible directions) for the optimization in Cycle 

two. After Cycle 2, all the reliability requirements are satisfied. Therefore, the result of 

Cycle 3 is identical to that of Cycle 2. Cycle 3 is a repeated cycle for convergence 

(KN)} 01.4Prob{ ≤PublicF
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purpose. From the result, we see that the desired reliability is progressively achieved and 

design is quickly improved. 

The deterministic optimization in Cycle 1 often generates an infeasible probabilistic 

solution even though with a better (in minimization, lower) objective function value than 

the final optimal probabilistic design. The reliability assessment in Cycle 1 often shows 

that the reliabilities of some constraints are lower than required. In this example, after the 

deterministic optimization in cycle 1, the objective function value is 23.5054 kg and the 

worst reliability among all constraints is 0.5, lower than the desired reliability (0.9). With 

the progress of SORA, the feasibility of constraints improves but the objective function in 

deterministic optimization deteriorates.  In our example, after Cycle 2, the objective 

function value deteriorates to 24.4897 kg while the worst reliability is improved to 

0.9749. After Cycle 3, the worst reliability increases to the required level with the final 

objective function value of 24.4913 kg.  

Insert Table 1 here.  
 
 

The convergence history of the objective (weight) is depicted in Fig. 7 where cycles 

distinguish from each other clearly – in each cycle, one reliability assessment follows one 

optimization.  It is noted that most of computations are for reliability analyses. The total 

number of function evaluations is 491 including 74 for optimizations and 341 for 

reliability analyses. The average number of function evaluations for reliability analysis 

during each cycle is 114.  

Our confirmation test shows that SORA has the same accuracy as the double-loop 

methods (the DLM_Prob and the DLM_Per). However, the DLM_Prob and the 

DLM_Per require much more function evaluations as shown in Table 2. The numbers of 
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function evaluations required by the DLM_Per and the DLM_Prob are 3324 and 26984, 

respectively. It is noted that the SORA method is the most efficient and the DLM_per is 

more efficient than the DLM_Prob. 

 
Insert Fig. 7 here. 

 
Insert Table 2 here.  

 
2) Case 2 – Desired Reliability = 0.99865 (β=3) 

All the three methods (the SORA method, the DLM_Prob and the DLM_Per) 

generate the same results as follows: 

µQ=28.4397 kg, R1=R3=R4=R5=R6=R7≈1.0, R2=R8=R10=0.99865. In this case, three 

constraints (Drib_low, Pubic_F and, vd) are active with the exact reliability of 0.99865. 

With the SORA method, three sequential cycles of optimization and reliability 

assessments are used. Since the desired reliability is higher than that in Case 1, the 

reliability analysis needs more computations. The number of function evaluations for 

reliability is 446 (see Table 3), and the average number for each cycle is 149 which is 

larger than the one in Case 1. The number of function evaluations for optimization is 84 

and the total number of function evaluations is 530. The numbers of function evaluations 

required by the DLM_Per and the DLM_Prob are 3272 and 456195, respectively. 

Therefore, the SORA method is still the most efficient and the DLM_per is more efficient 

than the DLM_Prob. 

Insert Table 3 here. 
 

4.2 Integrated Reliability and Robust Design for the Speed Reducer 

The speed reducer problem presents the design of a simple gearbox of a small aircraft 

engine, which allows the engine to rotate at its most efficient speed.  This has been used 
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as a testing problem for nonlinear optimization method in the literature. The original 

design was modeled by Golinski [25, 26] as a single-level optimization, and since then 

many others have used it to test a variety of methods, for example, as an artificial 

multidisciplinary optimization problem [27-31]. 

Since in the design of the speed reducer there are many random variables, such as 

the sizes of the components (gears, shafts, etc.), material properties, and the operation 

environment (rotation speed, engine power etc.), it is also a good example for 

optimization under uncertainty. We modify this problem as a probabilistic design 

problem by assigning randomness to appropriate variables and parameters. 

The deterministic design model of the speed reducer is given in [27]. In the 

probabilistic design, there are two deterministic design variables: 1d =  teeth module, and 

number of pinion teeth, and five random design variables: face width, 

shaft-length 1 (between bearings), 

2d = 1X =

2X = 3X = shaft-length 2 (between bearings), 

shaft diameter 1,  shaft diameter 2. There are 15 random parameters , 

including the material properties, the rotation speed, and the engine power, and 11 

constraints among which ten (g

4X = 5X = 151 ~ PP

1~g10) are probabilistic constraints which are related to the 

bending condition, the compressive stress limitation, the transverse deflection of shafts 

and the substitute stress conditions, as well as one deterministic constraint g11. The design 

objective is to minimize the weight of the speed reducer. 

The integrated reliability and robust design model is provided as follows: 

Insert Fig. 8 here. 
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w1 and   are weighting factors. 2w *
qµ  (obtained by 11 =w  and ) and 02 =w *

qσ  

(obtained by and ) are the ideal solutions used to normalize the two aspects 

in the objective, i.e., optimizing the mean performance and minimizing performance 

deviations.   

01 =w 12 =w

The mean qµ  and the standard deviation of the weight qσ  are evaluated by Taylor 

expansion at the means of the random variables.   

Since we consider the robustness in the design objective and the reliability 

requirements in the design feasibility, we call this design integrated reliability and robust 

design. 

The desired reliability for all the probabilistic constraints is 0.95. All the three 

methods, the SORA method, the DLM_Per and the DLM_Prob, are used to solve this 

problem and the results from them are identical.  

A comparison of the total number of function evaluations is provided in Table 4. 

The number of function evaluations of the SORA method is 338, among which 164 used 

for optimization and 174 used for reliability assessments. Three cycles are used by SORA 

to solve the problem. The SORA method is the most efficient method for this problem. 

 
Insert Table 4 here  

5. Discussions and Conclusion 

The purpose of developing the SORA method is to improve the efficiency of 

probabilistic design. Different from the existing double loop methods, the SORA method 

employs the strategy of sequential single loops for optimization and reliability 

assessment, which separates the reliability assessment from the optimization loop. The 

measures taken by SORA include the use of the percentile formulation for probabilistic 
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constraints instead of the reliability formulation to avoid evaluating the actual 

reliabilities; the use of sequential cycles of optimization and reliability assessments to 

reduce the total number of reliability analyses; and the use of an efficient and robust 

inverse MPP search algorithm to perform the reliability assessments.   

The combination of these measures formulates a serial of “equivalent” deterministic 

optimization problems in such a way that the optimum solution can be identified 

progressively and quickly. The probabilistic constraints are formulated as the 

deterministic constraint functions (for R percentile evaluations), which are evaluated at 

their inverse MPPs.  If the design objective is deterministic, such as those in reliability-

based design, there is no need to perform any probabilistic analysis in the optimization 

process. Therefore, the SORA method is extremely efficient for reliability-based 

optimization. As demonstrated in Example 1, the SORA method has much higher 

efficiency than the double loop methods. When the objective is formulated 

probabilistically, for example, the design objective is related to both the mean and 

standard deviation of the objective function for a robust design, or the design objective is 

the expected utility in the utility optimization, the SORA method is still applicable. 

However, its efficiency depends on how to evaluate the probabilistic characteristics of the 

objective function. If computationally expensive methods, such as the sampling method, 

are employed, the efficiency will decrease. If deterministically equivalent methods are 

used to evaluate the probabilistic objective, the efficiency of the SORA method will still 

be acceptable. One example of this treatment is demonstrated by the integrated reliability 

and robust design for the speed reducer presented in Section 4, where we employed the 
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Taylor expansion to evaluate the mean and the standard deviation of the objective 

function. 

Even though the SORA method is shown to be very effective with all the problems 

tested and there were not any convergence difficulties, one should be aware that due to 

the novelty of the proposed strategy, there might be a convergence problem when the 

objective and/or constraint functions are highly nonlinear or irregular (for example, 

discontinuous).  In those cases, the activities of deterministic constraints may change 

drastically from cycle to cycle, and the strategy of shifting the boundary of active 

deterministic constraints may not work.  One should also be aware that if the 

dimensionality of the problem is huge or there are systems that are coupled (e.g., 

multidisciplinary systems), all existing probabilistic design methods, including the SORA 

method, will be very computationally expensive.  The computational demand of MPP 

based approach is approximately proportional to the number of random 

variables/parameters when numerical derivative approaches are employed.  DOE (Design 

of Experiments) can be used to screen out unimportant random variables/parameters [16] 

to reduce the problem size. When multidisciplinary systems are involved, special 

reliability analysis formulations [32] can be used to alleviate the computational expense. 

Furthermore, there is a potential to improve the efficiency of the SORA method. 

Some of the probabilistic constraints are never active during the whole design process 

and their reliabilities are always above the desired levels. Therefore, it is not necessary to 

evaluate the percentiles of those constraints in the reliability assessment in each cycle. By 

investigating the method to identify the never-active probabilistic constraints can avoid 

unnecessary reliability assessments and hence can improve the efficiency considerably.  

 24



 

Acknowledgement 

The supports from the National Science Foundation grants DMI-9896300 and DMI-

0099775 are gratefully acknowledged. The authors would also like to acknowledge Drs. 

Lei Gu and Ren-Jye Yang of Ford Motor Company for providing the design model of 

reliability-based design for vehicle crashworthiness of side impact. 

 
Reference 

[1] Melchers, R.E., 1999, Structural Reliability Analysis and Prediction, John Wiley & 
Sons, Chichester, England. 

[2] Carter, A. D. S., 1997, Mechanical reliability and design, New York, Wiley. 
[3] Grandhi, R.V. and Wang, L.P., 1998, “Reliability-Based Structural Optimization 

Using Improved Two-Point Adaptive Nonlinear Approximations,” Finite Elements 
in Analysis and Design, 29(1), pp. 35-48. 

[4] Wu, Y.-T. and Wang, W., 1996, “A New Method for Efficient Reliability-Based 
Design Optimization,” Probabilistic Mechanics & Structural Reliability: 
Proceedings of the 7th Special Conference, pp. 274-277. 

[5] Taguchi, G., 1993, Taguchi on Robust Technology Development: Bringing Quality 
Engineering Upstream, ASME Press, New York. 

[6] Phadke, M.S., 1989, Quality Engineering Using Robust Design, Prentice Hall, 
Englewood Cliffs, NJ. 

[7] Parkinson, A., Sorensen, C., and Pourhassan, N., 1993, “A General Approach for 
Robust Optimal Design,” ASME Journal of Mechanical Design, 115(1), pp.74-80. 

[8] Chen, W., Allen, J.K., Mistree, F., and Tsui, K.-L., 1996, “A Procedure for Robust 
Design: Minimizing Variations Caused by Noise Factors and Control Factors,” 
ASME Journal of Mechanical Design, 18(4), pp. 478-485. 

[9] Du, X. and Chen, W., 2002, “Efficient Uncertainty Analysis Methods for 
Multidisciplinary Robust Design,” AIAA Journal, 40(3), pp. 545 - 552. 

[10] Du, X. and Chen, W., 2000, “An Integrated Methodology for Uncertainty 
Propagation and Management in Simulation-Based Systems Design,” AIAA Journal, 
38(8), pp. 1471-1478.  

[11] Wu, Y.T., 1994, “Computational Methods for Efficient Structural Reliability and 
Reliability Sensitivity Analysis,” AIAA Journal, 32(8), 1717-1723.  

[12] Tu, J., Choi, K.K and Young H.P., 1999, “A New Study on Reliability-Based 
Design Optimization,” ASME Journal of Mechanical Engineering, 121(4), pp. 557-
564. 

[13] Du, X. and Chen, W., 2000, “Towards a Better Understanding of Modeling 
Feasibility Robustness in Engineering,” ASME Journal of Mechanical Design, 
122(4), pp. 357-583. 

 25

http://pac.ilcso.uiuc.edu/web2/tramp2.exe/do_authority_search/B3aquf32.002?servers=1home&index=au&material_filter=all&language_filter=all&location_filter=&location_group_filter=all&date_filter=All&query=Carter%2C+A%2E+D%2E+S%2E
http://tigger.uic.edu/~xiaoping/AIAA_11_99.pdf
http://tigger.uic.edu/~xiaoping/AIAA_11_99.pdf


[14] Chen X. and Hasselman T.K., 1997, “Reliability Based Structural Design 
Optimization for Practical Applications,” 38th AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics and Materials Conference and Exhibit and 
AIAA/ASME/AHS Adaptive Structural Forum, Kissimmee, Florida. 

[15]  Wu, Y.-T., Shin Y., Sues, R., and Cesare M., 2001, “Safety-Factor based Approach 
for Probabilistic-based Design optimization,” 42nd AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics and Materials Conference and Exhibit, Seattle, 
Washington. 

[16] Sues, R.H., and Cesare, M., 2000, “An Innovative Framework for Reliability-Based 
MDO,” 41st AIAA/ASME/ASCE/AHS/ASC SDM Conference, Atlanta, GA. 

[17] Hasofer, A.M. and Lind, N.C., 1974, “Exact and Invariant Second-Moment Code 
Format,” Journal of the Engineering Mechanics Division, ASCE, 100(EM1), pp. 
111-121. 

[18] Du, X. and Chen, W., 2001, “A Most Probable Point Based Method for Uncertainty 
Analysis,” Journal of Design and Manufacturing Automation, 1(1&2), pp. 47-66.  

[19] Reddy, M.V., Granhdi R.V. and Hopkins, D.A., 1994, “Reliability Based Structural 
Optimization: A Simplified Safety Index Approach,” Computer & Structures, 53(6), 
pp. 1407-1418. 

[20] Wang L., Grandhi, R.V. and Hopkins, D.A., 1995, “Structural Reliability 
Optimization Using An Efficient Safety Index Calculation Procedure,” International 
Journal for Numerical Methods in Engineering, 38(10), pp. 171-1738. 

[21] Choi, K.K and Youn B.D, 2001, “Hybrid Analysis Method for Reliability-Based 
Design Optimization,” 2002 ASME International Design Engineering Technical 
Conferences and the Computers and Information in Engineering Conference, 
Pittsburgh, Pennsylvania.  

[22] Du, X. Sudjianto, A., and Chen W., 2003, “An Integrated framework for 
Optimization under Uncertainty Using Inverse Reliability Strategy,” 
DETC2003/DAC-48706, 2003 ASME International Design Engineering Technical 
Conferences and the Computers and Information in Engineering Conference,  
Chicago, Illinois. 

[23] Yang, R.J., Gu, L., Liaw, L., Gearhart, and Tho, C.H., 2000, “Approximations for 
Safety Optimization of Large Systems,” DETC-2000/DAC-14245, 2000 ASME 
International Design Engineering Technical Conferences and the Computers and 
Information in Engineering Conference, Baltimore, MD.  

[24] Gu, L., Yang, R.J., Tho, C.H., Makowski, M., Faruque, O., and Li, Y., 2001, 
“Optimization and Ronustness for Crashworththiness of Side Impact,” International 
Journal of Vehicle Design, 25(4), pp. 348-360. 

[25] Golinski, J., 1970, “Optimal Synthesis Problems Solved by Means of Nonlinear 
Programming and Random Methods,” ASME Journal of Mechanisms, 
Transmissions, Automation in Design, 5(4), pp.287- 309.  

[26]  Golinski, J., 1973, “An Adaptive Optimization System Applied to Machine 
Synthesis,” Mechanism and Machine Theory, 8 (4), pp.419-436. 

[27] Li, W., 1989, Monoticity and Sensitivity Analysis in Multi-Level Decomposition-
Based Design Optimization, Ph.D. dissertation, University of Maryland.   

[28] Datseris, P., 1982, “Weight Minimization of a Speed Reducer by Heuristic and 
Decomposition Techniques,” Mechanism and Machine Theory, 17(4), pp.255-262. 

 26



[29] Azarm, S. and Li, W.-C., 1989, “Multi-Level Design Optimization Using Global 
Monotonicity Analysis,” ASME Journal of Mechanisms, Transmissions, and 
Automation in Design, 111 (2), pp.259-263. 

[30] Renaud, J. E., 1993, “Second Order Based Multidisciplinary Design Optimization 
Algorithm Development,”  American Society of Mechanical Engineers, Design 
Engineering Division (Publication) DE, v 65, pt 2, Advances in Design Automation, 
pp.347-357. 

[31] Boden, Harald; and Grauer, Manfred, 1995, “OpTiX-II: A Software Environment 
for the Parallel Solution of Nonlinear Optimization Problems,” Annals of 
Operations Research, 58, pp.129-140. 

[32] Du, X. and Chen, W., 2002, “Collaborative Reliability Analysis for 
Multidisciplinary Systems Design,” 9th AIAA/ISSMO Symposium on 
Multidisciplinary Analysis and Optimization, Atlanta, GA. 

 27



 

 
PDF of g

g 0

Area = Prob(g≤ 0)≥R 

 

Fig. 1 PDF of a Constraint Function g 
 

 28



 
PDF of g 

g 0 gR 

Area = Prob(g≤ gR)=R 

 
 

Fig. 2 R - Percentile of a Constraint Function 

 29



 
 

XMPP 

Deter. Con. 
g(µx1, µx2)=0 

Prob. Con. 
Prob{g(X1, X2)≤0}=R 
or g(xMPP1, xMPP2)=0 

µx1, X1 

µx2, X2 

1-R 

O 

Deter – Deterministic 
Prob – Probabilistic 
Con – Constraint 

 ) ,( 21 xx µµ   

 Fig. 3 Probabilistic Constraint 

 

 30



Starting point

Reliability Assessment

Find MPPip  and  MPPix  

K = K + 1 

f Converges? 
g's are feasible?

End

Y

d(0), µ(0)
x 

d(k), µ(k)
x 

Optimization 
) ,(min xµdf  

s.t. ( ,  ,   ) 0i x i MPPig − ≤d µ s p

K = 1, 0=is , (0)
MPPi = pp µ , (0) MPPi = xx µ

N

( ) ( )k k
i MPPi= −xs µ x

 

Fig. 4 Flowchart of the SORA Method 
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Find   9 , 2, 1,, L=iiµ  

Minimize   qµ  (the mean of  the weight) 
Subject to  1R(KN)} 0.1Prob{ ≥≤adAbdomen_loF  
   21 R(m/s)} 32.0Prob{ ≥≤VC  
   32 R(m/s)} 32.0Prob{ ≥≤VC  
   43 R(m/s)} 32.0Prob{ ≥≤VC  
   5R(mm)} 32Prob{ ≥≤lowD  
   6R(mm)} 32Prob{ ≥≤middleD  
   7R(mm)} 32Prob{ ≥≤upD  
   8R(KN)} 01.4Prob{ ≥≤PublicF  
    9R(m/s)} 9.9Prob{ ≥≤bpV
    10R(m/s)} 69.15Prob{ ≥≤dV
Side Constraints: 7~1 , =≤≤ iuiili µµµ  
   345.0or  192.0 , 98 =µµ (material properties) 

where µi (i = 1, 2, …, 9)  are the means of  Xi, qµ  is the nominal value of structure 
weight q, and Ri (i = 1, 2, …, 10) are desired reliabilities. 

Fig. 6 Reliability-Based Design Model for Vehicle Crashworthiness of Side 
Impact 
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Fig. 7 Convergence History of the Object 
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Find    and 2 1,, =idi 9 , 2, 1,, L=jjµ  

Minimize   Minimize: 1 2* *
q q

q q

w w
µ σ
µ σ

+  

Subject to  { } kProb 0 R 1,  2, ,10kg k≤ ≥ = L  
    011 ≤g
Side Constraints:  ,  1,  2di i dil d u i≤ ≤ =
   ,  1,  2, ,9j j jl u jµ µµ≤ ≤ = L  

Fig. 8 Integrated Reliability and Robust Design Model 
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Table 1 Result of SORA Method for Vehicle Side Impact for Case 1 

Cycle 1 
Constraints Design Variables Objective Name Nominal Value Reliability 

µ1 0.50 FAbdomen_load 0.5727 1.0 
µ2 1.2257 Dlow 32.0000 0.50 
µ3 0.50 Dmiddle 27.6641 0.9960 
µ4 1.1871 Dup 29.3721 0.9993 
µ5 0.8750 VC1 0.2299 1.0 
µ6 0.9139 VC2 0.2029 1.0 
µ7 0.40 VC3 0.2925 1.0 
µ8 0.3450 F Pubic 4.0100 0.50 
µ9 0.1920 Vbp 9.3423 1.0 
  

23.5054 

Vd 15.6781 0.5343 
Cycle 2 

Constraints Design Variables Objective Name Nominal Value Reliability 
µ1 0.50 FAbdomen_load 0.4839     1.0 
µ2 1.3091 Dlow 31.1742     0.9001 
µ3 0.50 Dmiddle 27.1367     0.9985   
µ4 1.2938 Dup 29.5611     0.9983   
µ5 0.8750 VC1 0.2330     1.0 
µ6 1.20 VC2 0.2116     1.0 
µ7 0.40 VC3 0.2896     1.0 
µ8 0.3450 F Pubic 3.9487     0.90   
µ9 0.1920 Vbp 9.2581     0.9996   
  

24.4897 

Vd 15.4671     0.9749   
Cycle 3 

Constraints Design Variables Name Nominal Value Reliability 
µ1 0.50 FAbdomen_load 0.4838     1.0 
µ2 1.3091 Dlow 31.1742     0.9001 
µ3 0.50 Dmiddle 27.1367     0.9985   
µ4 1.2942 Dup 29.5611     0.9983   
µ5 0.8750 VC1 0.2330     1.0 
µ6 1.20 VC2 0.2116     1.0 
µ7 0.40 VC3 0.2896     1.0 
µ8 0.3450 F Pubic 3.9485     0.9004   
µ9 0.1920 Vbp 9.2581     0.9996   
  

Objective 
24.4913 

Vd 15.4671     0.9749   

Note: The reliability =1.0 means that the reliability approaches closely but may not 

exactly equals to 1.0. 
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Table 2 Number of Function Evaluations 

Method NFE for Reliability 
Assessment 

NFE for 
Optimization Total NFE 

SORA 341 74 415 
DLM_Per – – 3324 

DLM_Prob – – 26984 

NFE – Number of Function Evaluations 

 

 
Table 3 Number of Function Evaluations 

Method NFE for Reliability 
Assessment 

NFE for 
Optimization Total NFE 

SORA 446 84 530 
DLM_Per – – 3272 

DLM_Prob – – 456195 

 

 
Table 4 Number of Function Evaluations 

Method NFE for Reliability 
Assessment 

NFE for 
Optimization Total NFE 

SORA 174 164 338 
DLM_Per – – 3532 

DLM_Prob – – 20134 
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