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ABSTRACT 
The Sequential Optimization and Reliability Assessment 

(SORA) method is a single loop method containing a sequence 
of cycles of decoupled deterministic optimization and reliability 
assessment for improving the efficiency of probabilistic 
optimization.  However, the original SORA method as well as 
some other existing single loop methods is not efficient for 
solving problems with changing variance. In this paper, to 
enhance the SORA method, three formulations are proposed by 
taking the effect of changing variance into account. These 
formulations are distinguished by the different strategies of 
Inverse Most Probable Point (IMPP) approximation. 
Mathematical examples and a pressure vessel design problem 
are used to test and compare the effectiveness of the proposed 
formulations.  The “Direct Linear Estimation Formulation” is 
shown to be the most effective and efficient approach for 
dealing with problems with changing variance. The gained 
insight can be extended and utilized to other optimization 
strategies that require MPP or IMPP estimations.  
 
KEYWORDS 
probabilistic optimization, single loop method, most probable 
point, changing variance. 

NOMENCLATURE 
CDF    = Cumulative Distribution Function 
DLP    = Double Loop 
DO    = Deterministic Optimization 
FORM    = First Order Reliability Method 
IMPP    = Inverse Most Probable Point 
KKT    = Karush-Kuhn-Tucker 
MAMV    = Modified Advanced Mean Value 
MPP    = Most Probable Point 
PDF    = Probability Density Function 
RA    = Reliability Assessment 
SLP    = Single Loop 
SORA       = Sequential Optimization and Reliability       
                    Assessment 
SORM    = Second Order Reliability Method 

  d = deterministic design vector 
 ig  = ith probabilistic constraint 
  p = random parameter vector 
 iR  = reliability level for the ith probabilistic constraint 
  s = shifting vector  
  u = independent and standardized normal vector 
 iU  = ith component of u 
  x = random design vector  

iX  = ith random design variable 

IMPPx  = IMPP vector 

IMPPiX  = ith component of IMPP vector 

IMPPu  = IMPP vector in standard normal space 

IMPPiU  = ith component of IMPP in standard normal space 
β           = reliability index 

xµ  = vector of mean values of random design variables 

ixµ         = mean of ith random design variable 

ixσ         = standard deviation of ith random design variable 

 ir          = coefficient of variation for ith random design variable 
              
1. INTRODUCTION 

Probabilistic design optimization offers an approach for 
making reliable design decisions with the consideration of 
uncertainty [1-7]. In the existing applications, probabilistic 
optimization is accomplished by either the Double Loop (DLP) 
method [8-11] or the Single Loop (SLP) method [12-15]. The 
traditional double loop method consists of the design 
optimization loop (outer loop) in the original design variable 
space, which iteratively performs the reliability analysis (inner 
loop) in the standard normalized space of random design 
variables until achieving the optimum and meeting the desired 
reliability of probabilistic constraints. Due to the nested 
structure of outer and inner loops, the double loop method is 
often computationally expensive and not affordable for a 
variety of practical applications.  
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Recent years have seen many efforts made towards 
developing new and efficient probabilistic optimization 
strategies. The single loop method has been developed to avoid 
the nested coupling of the outer and inner loops [12, 14, 15]. 
The existing SLP methods deviate in the way of how 
optimization and reliability analysis are organized. One type of 
SLP methods directly integrate the reliability analysis into a 
design optimization procedure and solve the integrated problem 
as a single optimization problem.  The other type of SLP 
methods decouple the optimization and reliability analysis and 
solve them sequentially from cycle to cycle.  We call the 
former “integrated single loop method” and the later 
“decoupled, sequential single loop method”. An example under 
the “integrated single loop method” is the “single loop single 
vector” approach [14] that is employed in a reduced, 
uncorrelated and normalized parameter space other than the 
standard normal space. Without conducting the expensive Most 
Probable Point (MPP) [16] search, it uses the steepest descent 
direction from the previous iteration to approximate MPP and 
generates an equivalent deterministic optimization problem. 
Although this method avoids nested loops, it needs to evaluate 
all the constraint derivatives to identify the active constraints by 
using an active constraint searching strategy. Another efficient 
method under the “integrated single loop method” is the 
approach recently developed by Liang et al. [15], where a 
probabilistic optimization problem is converted into an 
equivalent deterministic optimization problem by adding an 
equality constraint that determines the MPP based on the 
Karush-Kuhn-Tucker (KKT) optimality conditions of the 
reliability constraints. Although the method greatly improves 
the efficiency by eliminating the reliability analysis loop, the 
KKT condition is only a necessary but not sufficient condition. 
The method may have difficulties in locating the exact MPP 
when there are multiple, local MPPs.  
 

Examples of the “decoupled, sequential single loop 
methods” include the Safety-Factor Approach [17] and our 
recently developed Sequential Optimization and Reliability 
Assessment (SORA) method [12].  The SORA method [12] 
decouples the probabilistic optimization problem in the form of 
a serial of sequential Deterministic Optimization (DO) followed 
by Reliability Assessments (RA). The SORA method achieves 
high efficiency by taking the following measures: the use of R-
percentile formulation (Inverse Most Probable Point - IMPP 
concept) to evaluate constraint satisfaction only up to the 
required reliability level (R) [18]; the use of an efficient and 
robust IMPP search algorithm for reliability assessment [19]; 
and the employment of a shifting vector for estimating IMPP in 
the DO formulation of a new cycle. Because the IMPP 
estimation of a new cycle is always based on the exact IMPP 
from the previous cycle, the method improves the accuracy in 
IMPP estimation, which is especially useful when there are 
multiple, local optimal solutions to IMPPs.  The safety-factor 
approach  [17] follows the similar strategy of decoupling 
optimization and reliability assessment, but approximates the 
MPP by performing a reliability analysis with the “shifted” 
limit-sate function. Yang and Gu [20] compared various 
probabilistic optimization strategies on a set of benchmarking 
problems.  It shows that the SORA method is one of the most 
robust and efficient methods.  
 

One limitation of the SORA method and some other 
existing probabilistic optimization methods is that the existing 
formulation and solution strategies only take into account the 
random design variables with constant variances. In practice, 
instead of fixed variance, design variance often depends on the 
magnitude of a design variable. For example, the concentricity 
of the cylindric surface of a shaft needs to be controlled within 
a certain range if the geometry of the shaft is that of a stepped 
cylinder.  Compared with a small shaft, to manufacture one 
with larger size in proportion, larger variance of the 
concentricity is allowed due to the increasing difficulties in 
keeping the same concentricity when the length of the shaft 
becomes larger. One efficient way to describe the changing 
variance is to introduce the coefficient of variation (the rate of 
standard deviation to the mean value of a random variable). The 
changing variance in probabilistic design poses more 
difficulties in predicting the MPP and the constraint boundary 
of an equivalent DO formulation as well as the final design 
solution.  

 
Our objective in this paper is to enhance the SORA method 

by developing new formulations that take into account the 
changing variance, while keeping the decoupling, single loop 
strategy the same. Three different formulations are examined in 
this work, and compared to the use of the original SORA 
method for problems with changing variance.  Observations 
and recommendations are made based on comparative studies 
using several illustrative examples. 
 

The paper is organized as follows. Section 2 of this paper 
provides a brief review of the original SORA method as well as 
the concept of Inverse Most Probable Point (IMPP). In Section 
3, four formulations that employ different strategies to consider 
the effect of changing variance are presented. They are 1) 
Shifting Vector Formulation (Approach 0 or the original SORA 
method); 2) Approximated IMPPu  Formulation (Approach 1); 
3) Direct Linear Estimation Formulation (Approach 2); and 4) 
Quasi First Order Approximation of IMPPx  Formulation 
(Approach 3).  The efficiencies and optimal results of these 
methods are compared in Section 4 through illustrative 
examples.  Section 5 provides the conclusion.  
 
 
2. REVIEW OF THE SORA METHOD 
 
2.1 BACKGROUND OF PROBABILISTIC   

OPTIMIZATION 
A typical probabilistic design model [21] is defined as 

( )
( ){ } m,1,2,i ,0,,   oSubject  t
,,    Minimize

,    Find

L=≥≥ iii RgP 
f

pxd
pxd

µd x      ,     (1) 

where d vector stands for deterministic design variables; x 
vector contains all random design variables iX ; p vector is for 
random design parameters with fixed distributions; m is the 
number of reliability constraints; and xµ  is a vector composed 
of mean values of random design variables. Different from 
deterministic design, probabilistic design focuses on 
maintaining design feasibility for constraints at desired 
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probabilistic levels. Thus the probability of constraint 
satisfaction, Pi for 0≥ig , should be no less than the desired 
reliability level iR , which is referred to reliability assessment, 
The ig  functions are the so-called limit state functions [16].  
 

One efficient way for reliability assessment is to employ 
the Most Probable Point (MPP) approach [16]. With the MPP 
approach, all random variables x and p are transformed into u 
in a standardized normal space, called u-space. In u-space, 
MPP is formally defined as a point located on the limit state 
function hypersurface with the minimum distance to the origin 
point. The corresponding minimum distance is the safety 
indexβ  indicating the reliability level of the limit state function 
as shown in Fig. 1. When the First Order Reliability Method 
(FORM) is used, reliability R is approximated as the 
standardized normal Cumulative Distribution Function (CDF) 

)(βΦ . Higher order estimations, such as Second Order 
Reliability Method (SORM) [22-24], could be used if a more 
precise estimation of reliability is needed. 

 
Figure 1. Transformation of input variables and illustration of 

most probable point (MPP) 
 

Determining the MPP point on the limit state function, or 
called the original MPP search, can be implemented by solving 
the following optimization problem in Eqn. (2).   

0)g(  ..

min
U

=u

u

ts
     ,     (2) 

where 
min

u  is the safety indexβ . Inversely, given a desired 
reliability level R and correspondingly the safety indexβ , the 
procedure of finding the corresponding MPP on the limit state 
function is called the Inverse MPP (IMPP) search. Among the 
IMPP search methods, the Modified Advanced Mean Value 
(MAMV) method [25] improves the efficiency and robustness 
of the IMPP search for both convex and concave limit state 
functions. The IMPP facilitates the conversion of original 
reliability constraints to R-percentile formulations for 
improving computational efficiency. At the MPP as well as 
IMPP, for a normal distribution function, the following 
relationship holds when transforming random variables x into 
the normal space u:  

IMPPixxIMPPi UµX
ii
⋅+= σ      .     (3) 

 
2.2 THE SORA METHOD 

The Sequential Optimization and Reliability Assessment 
(SORA) method is a decoupled, sequential single loop method 

for probabilistic optimization [12]. As shown in Fig. 2, SORA 
improves the computational efficiency of probabilistic 
optimization by decoupling the reliability assessment from the 
optimization loop. In each cycle k, the procedure contains two 
separate parts of Deterministic Optimization (DO) and 
Reliability Assessment (RA).  The DO at cycle k is formulated 
by including the predicted IMPP which is estimated based on 
the exact IMPP verified from the RA in cycle k-1, marked as a 
dash line in the flowchart. In each cycle, the design solution 
obtained from DO is verified by checking the feasibility of 
probabilistic constraint in RA.  If the feasibility is satisfied, the 
process will stop after verifying the convergence criterion; 
otherwise the cycle will be repeated. 

Deterministic Optimization 
Find k

x
k µd ,  

( )k
x

kf µd ,min  
s.t. ( ) 0,, ≥− k

IMPP
kk

x
k

ig psµd  

Reliability Assessment 
Inverse MPP Search 
Find k

IMPPx  and k
IMPPp  

Start 

00000 ,,,1 pIMPPxIMPPk µpµx0s ====

End 

cycle 
1+= kk

f Converges? 
g's are feasible? 

 

11 −− −= k
IMPP

k
x

k xµs

Predicted
IMPP 

Verified 
IMPP

 
Figure 2. Flowchart of the original SORA method 

 
Two important measures are taken in converting 

probabilistic constraints to equivalent deterministic constraints 
in the DO formulation of SORA: one is related to the use of R 
percentile formulation to replace the original reliability 
constraint; the other applies a shifting vector to refine the 
feasible region if the design solution from DO is verified to be 
infeasible from RA.  Given the desired reliability R, the original 
expression of a constraint g in probabilistic design 
is ( ){ } RgP ≥≥ 0px,d, . The percentile performance Rg , is the 
value of the limit state function g that makes the integration 
area under the probabilistic distribution function of g for  

Rgg ≥  exactly equal to the required reliability R.  The original 
probabilistic constraint can be rewritten in the equivalent R-
percentile formulation as  

0≥Rg , and further ( ) 0≥= MPPMPP p,xd, II
R gg .     (4) 

The use of R-percentile formulation saves the computational 
effort by evaluating the design feasibility only up to the desired 
reliability level (R), which is often lower than the actual 
reliability level when a probabilistic constraint is feasible. It 

β  

( ) 0=xg  

X2 

X1 U1 

x-Space u-Space 

( ) 0=ug  

U2 

uMPP or uIMPP 
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also converts the original probabilistic formulation to an 
equivalent deterministic optimization as: 

( )
( ) 0 oSubject  t

Minimize
Find

≥MPPMPP

x,

x

p,xd,g
pµd,

µd,

II

f      .     (5) 

The model in Eqn.(5) shows that for a critical probabilistic 
constraint, the IMPPs should sit on the boundary of the 
deterministic constraint.  Since the exact IMPPs of x and p at 
the design solution ( )xµd,  of the current DO are not known 
until the RA is implemented, they are approximated based on 
the exact IMPPs from the RA in the previous cycle.  With the 
original SORA method, a shifting vector concept is applied and 
the ith constraint of the DO formulation in Cycle k+1 becomes  

( ) 01 ≥− ++ k
ig IMPP

1k
x p,sµd,      ,     (6) 

where the shifting vector 1+ks in Cycle k+1 is defined as  
k
IMPP

k
x

k xµs −=+1   or  k
IMPPix

k
i Uσs

i
⋅−=+1      .     (7) 

 
The idea behind using the shifting vector is illustrated in 

Fig. 3 for a problem having two random design variables X1, X2 
with means being 1µ and 2µ , respectively. It shows that when 

the exact IMPP from RA in cycle k, i.e., k
IMPPx , falls to the left 

side of DO constraint, the probabilistic constraint is infeasible.  
To ensure that the IMPP is located on the deterministic 
constraint boundary, in the next cycle k+1, the new boundary 
marked as the dotted line is moved from the previous 
deterministic constraint boundary by the shifting vector 1+ks . 
We can also interpret the shift concept by relating Eqns. (4) and 
(6) to the R-percentile formulation of constraints at cycle k+1, 
i.e., 

( ) 011 ≥++ kk
ig IMPPIMPP p,xd,      .     (8) 

Relating to Eqns. (6) and (7), we are basically using the 
following predictions for the IMPP at Cycle k+1 with the 
SORA method: 

k
IMPP

k
xx

k
IMPP

k
xxx

k
IMPP xµµxµµsµx 1k1k1k1k +−=−−=−≈ +++++ )(1 ,(9) 

kk
IMPPIMPP pp ≈+1      .     (10) 

As more mathematical details will be revealed later in Section 
3.3, Eqns. (9) and (10) provide accurate estimations of IMPPs 
when the limit state function is linear in the x domain and when 
the variances of x are constants (variance of p is constant by 
default).  Under these conditions, the SORA method should 
find the optimal probabilistic solution in cycle 2.  Under 
general conditions, it often takes a few more cycles to reach the 
final solution while the feasibility of a solution progressively 
improves and the estimations of IMPPs get closer to the real 
values. 
 

The SORA method has been successfully applied to design 
applications such as vehicle crashworthiness and other 
engineering problems [12, 26]. Compared to the double loop 
method, the SORA method is shown to be much more efficient.  
However, the original SORA method does not incorporate the 
information of the design point and design variance in a new 

cycle. For general conditions, especially in the case that the 
variance of a design variable is changing with respect to the 
mean location, improved formulations need to be developed to 
achieve higher efficiency for convergence. 

 
Figure 3. Shifting distance of probabilistic boundaries 

 
 
3. ENHANCING SORA FOR PROBLEMS WITH    

CHANGING VARIANCES 
In this work, we consider three new formulations to 

incorporate changing variances into the formulation of SORA 
method. The original shifting vector formulation in SORA, 
named as Approach 0, is also tested for its efficiency in dealing 
with changing variance. All new approaches (Approaches 1-3) 
follow the same strategy of decoupling the deterministic 
optimization (DO) and reliability assessment (RA) as in SORA.  
They deviate in the formulations for predicting the IMPP in a 
new cycle. Empirical results are provided in Section 4. 
 
3.1 APPROACH 0 (ORIGINAL SORA): SHIFTING 

VECTOR FORMULATION 
This approach uses the same DO formulation as in the 

original SORA method (Eqn. (6)), but updates the variance 
right before the RA when verifying the exact IMPP. Assuming 
that the deviation of a random design variable is a function of 
its mean value, the core part of Approach 0 is shown in Fig. 4. 
In principle, this approach should be able to progressively 
improve the design solution by shifting the constraint boundary 
to the feasible region based on the exact IMPP obtained from 
the most recent cycle.  However, because the changing variance 
increases the computational effort for the IMPP search and the 
formulation used in DO does not incorporate the changing 
variance information, this approach is expected to take more 
cycles to reach the final optimal solution compared to solving 
problems with constant variance. 

 
Figure 4. Core of Cycle k+1 of Approach 0 

k
IMPPx

At Cycle k+1 
1. Define shifting vector k

IMPP
k
x

k xµs −=+1  

2. Deterministic Optimization to find 1+kd  and 1+k
xµ  

                   ( )11 ,min  ++ k
x

kf µd  

s.t. ( ) 0,, 111 ≤− +++ k
IMPP

kk
x

k
ig psµd  

3. Update deviation as )( 11 ++ = k
xx

k
x iii

µσσ  

4. Reliability Assessment to find  1+k
IMPPx  and 1+k

IMPPp  
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3.2 APPROACH 1: APPROXIMATED IMPPu  
FORMULATION 
Based on Eqn. (3), the following relationship should hold 

at cycle k+1:   
1111 ++++ ⋅+= k

IMPPi
k
x

k
x

k
IMPPi UµX

ii
σ      .     (11) 

Approach 1 approximates the IMPP at a new cycle by replacing 
1+k

IMPPiU in the above equation by k
IMPPiU , i.e., 

k
IMPPi

k
xx

k
x

k
IMPPi UµµX

iii
⋅+≈ +++ )( 111 σ      .     (12) 

The flow chart of approach 1 is similar to that of approach 0 in 
Fig. 4, except that the shifting vector is now changed to  

k
IMPPi

k
xx

k
i Uµs

ii
⋅−= ++ )( 11 σ      .     (13) 

With approach 1, the variance information is incorporated by 
updating the standard deviation in Eqn. (13) as the function of 
the mean value, )(

ii xx µσ , in a new cycle. However, since the 

IMPPU information is estimated based on the exact IMPP from 
the previous cycle, the formulation only provides an 
approximation.  It can be expected that if 1+k

IMPPU  is not too 

much far away from k
IMPPU , Approach 1 should work well and 

converge quickly.   
 
3.3 APPROACH 2: DIRECT LINEAR ESTIMATION 

FORMULATION 
The proposed Approach 2 derives the 1+k

IMPPx  by considering 
the slope information of the linearized limit state function g(x) 
at the exact IMPP from RA cycle k. Consider a linear constraint  

∑
=

+=
n

i
ii aXag

1
0)(x      .     (14) 

where ia  are the constraint function coefficients and 
( )nXX ,,1 L=x  is the design variable vector composed of n 

independent random variables with normal distributions. After 
transforming x to ( )nUU ,,1 L=u  in u-space using 

i

i

x

xi
i

X
U

σ
µ−

=   , the limit state function in u- space becomes         

∑

∑

=

=

+=

++=

n

i
ii

n

i
xixi

bUb

aUag
ii

1
0

1
0)()( µσU

     .     (15) 

where 
ixii ab σ=  and 

0
1

0 aab
ix

n

i
i +=∑

=

µ , ],,[ 1 nbb L=b . As 

shown in Fig. 1, the IMPP is the point where the norm of u 
reaches its minimum of  

b
uu || 0*

min

b
===β  when *uu =      .     (16) 

Here β  satisfies the equation of )(1 R−Φ=β ; R is the desired 
reliability for the constraint and ⋅  is the norm of an n-

dimensional vector; and *u  is a vector starting from the origin 
and perpendicular to the hypersurface with the norm β  and the 

direction 
b
bb −

=ˆ .  The IMPP in the u-space can be written as  

bb
bu βi

i

iIMPPi
b

UU
−

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
⋅== **      .     (17) 

Hence for any IMPP, 

b
i

iii

xi
xIMPPixxIMPPi

b
UX

βσ
µσµ −=+=      .     (18) 

From Eqn. (18), we can see that for random design variables 
with constant variances, if the slope, i.e., ],,[ 1 naa L=a  , of 
the linearized limit state functions doesn’t change too much 
when the IMPP moves from cycle to cycle, the second item in 
Eqn. (18) is almost a fixed value no matter where xµ  is. This 
explains the reason why in the original SORA method, for 
constant variance, the difference between IMPPx  and xµ is 
treated as a constant vector. When the variance is changing, we 
use Eqn. (18) to predict IMPP in a new cycle k+1 as,  

( )1
1

11 )( +
+

++ =−≈ k
xi

k
xiik

x
k
IMPPi h

b
X i

i
µ

b
µβσ

µ ,    (19) 

where b is obtained by linearizing the g(x) function at the exact 
IMPP from RA in cycle k.  The whole prediction function is 
represented as ( )xih µ . The bar above hi means the prediction is 
based on linearizing a limit state function.  
 

Based on its principle, Approach 2 is expected to solve a 
probabilistic optimization problem with linear constraints and 
constant variance in no more than 3 cycles: the first cycle for 
the initial deterministic optimization, the second cycle for 
locating a design solution with IMPP exactly at the boundary of 
DO, and the last one for convergence check. For nonlinear 
constraints, it is expected that Approach 2 should be quite 
efficient if the slope of a limit state function does not change 
too much when the IMPP moves from cycle to cycle.  Since the 
slope of g at the IMPP has been obtained in RA during the 
IMPP search of the last cycle, Approach 2 does not require 
additional function calls.  
 
3.4 APPROACH 3: QUASI FIRST ORDER 

APPROXIMATION OF IMPPx  FORMULATION 
Approach 1 utilizes the direct information of the exact 

IMPP from the previous cycle, and Approach 2 uses the slope 
information of a limit state function at the exact IMPP, to 
estimate the IMPP in a new cycle.  We consider here Approach 
3 that employs the Taylor expansion of the IMPP in x-space 
and provides the estimation of IMPP based on both the 
information of the exact IMPP and the slope of a limit state 
function from the previous cycle. 
 

For nonlinear functions, suppose IMPPx  is a function of 
xµ  as )( xµx hIMPP = , no matter whether the variance is fixed 
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or changing. Here the function h is unknown and cannot be 
expressed explicitly. In DO formulation of cycle k+1, let 

( ) ( ) ( )

( )kk
k

k
IMPP

kk
k

kkk
IMPP

h

hhh

xx
x

xx
x

xx

µµ
µ

x

µµ
µ

µµx

−
∂
∂

+=

−
∂
∂

+≈=

+

+++

1

111

.     (20) 

With our approach, h is approximated in the form of h , see 
Eqn. (21).  The h  is defined in Eqn. (19) based on the 
linearized limit state function. With this approximation, the 
partial derivatives in Eqn. (20) can be derived from the 
analytical expression of h  instead of the unknown function h.  
We call this method “Quasi First Order Approximation” 
because it is not necessary to evaluate the first-order derivatives 
in Eqn. (20) numerically.   

( )kk
k

k
IMPP

k
IMPP

h
xx

x

µµ
µ

xx −
∂
∂

+≈ ++ 11 .       (21) 

With the analytical approach, the ith component of h  is ih  in 

Eqn. (19). In the case of ii xix r µσ = , where the coefficients of 
variation ir  are constants, the partial derivatives can be 
evaluated as: 
     For ji =  

( )
( ) k

xxxii

ii
k
IMPPix

x

k
IMPPi

x

k
i

ii
i

i

ij ra

raXXh
µµµβ

µ
µµ =

−
++−=

∂
∂

322

223
2

1      (22) 

    For ji ≠  

( )
( ) k

xx
k
xxxii

k
IMPPixxjj

x

k
i

jjii
i

ij

j ra

Xrah
µµµµµβ

µµ

µ ==
−

=
∂
∂

,422

322

         (23) 

Note that if the partial derivative is close to one (i.e., the change 
of IMPP in x-domain is the same as the change of µx from cycle 
k to k+1), the above equation of 1+k

IMPPx  in Eqn. (21) degenerates 
into the expression used in the original SORA as in Eqn. (9). 
Similar to Approach 2, b is obtained by linearizing the g(x) 
function at the exact IMPP from RA in cycle k without the need 
for additional function evaluations. For a random design 
variable Xi with constant variance, the partial derivatives in 
Eqns. (22) and (23) are taken as one and zero, respectively. 
Under such condition, the IMPP estimation formulation is the 
same as the one used in the original SORA.  
 

Because the Taylor expansion is only a local expansion in 
a small neighborhood of the expanding point, we expect that 
the estimation will not be very accurate in the first several 
cycles when xµ may change significantly.  The estimation will 
become more accurate in later cycles when design points do not 
differ too much.  
 

If we consider problems with constant variances as a 
special case of using all four approaches presented, we expect 
that all the methods except Approach 2 should behave the same 
due to the same estimation formulation of IMPP when taking 

the variances as constants. Approach 2 differs slightly since its 
estimation of IMPP is based on linearized constraints. In 
Section 4, all these four approaches are applied in several 
examples to check their validity and effectiveness.  
 
3.5 IMPLEMENTATION FOR DIFFERENT TYPES OF 

DISTRIBUTIONS 
In the previous sections that introduce the different 

proposed formulations, we have assumed that x follow normal 
distributions which are commonly used in engineering 
applications. For problems with non-normal distributions, the 
same strategies for predicting an IMPP in a new cycle can be 
followed, but the xµ  and ( )xxσ µ  in those formulations need to 

be updated to N
xµ and N

xσ , the descriptors of mean and 
standard deviation for equivalent normal distributions. 
Following Rackwitz-Fiessler’s two parameter equivalent 
normal method [27], the N

xµ  and N
xσ  of an equivalent normal 

distribution at a point of interest *X can be expressed as,  

( )[ ]{ } ( )
( )[ ] N

xx
N
x

xx
N
x

XFX

XfXF

σµ

φσ
*1*

**1 /
−

−

Φ−=

Φ=      ,     (24) 

where φ  is the Probability Density Function (PDF) of standard 
normal distribution and xF , xf  are the CDF and PDF of the 
non-normal distribution of X, respectively. The same 
transformation needs to be used for searching the IMPP in the 
RA that follows the DO in each cycle.   
 
4. COMPARATIVE STUDIES 

In this section, two mathematical problems and one design 
example are used to compare the effectiveness of the three 
proposed formulations as well as the original SORA approach 
(approach 0). The results from the Double Loop Method using 
the R-percentile formulation are considered as the “exact” 
solutions for reference. All random variables are assumed to 
follow normal distributions with

ii xi µr=xσ , where ir is the 
constant coefficient of variation for iX .  
 
4.1 PROBLEM 1 WITH LINEAR CONSTRAINTS 

We consider only linear constraints in the first 
mathematical example as shown in Eqn. (25), where the 
objective function is nonlinear and all four constraint functions 
g’s are linear in the original design space. All input variables 
are random design variables ( 1X  to 6X ) with normal 
distributions ( )iiN σµ , , 6,,1L=i . The desired reliability is 
0.99865 for each constraint. For each approach, we examine 
two cases with different values of coefficients of variation and 
two other cases with different constant variances. 

 
Table 1 illustrates the efficiency and accuracy of the 

various approaches considered for changing variances. With a 
numerical tolerance of 1%, we find that all approaches reach 
the same optimal solution for both cases.  All three proposed 
approaches (1 to 3) improve the efficiency greatly compared to 
the Double Loop method (DLP). The three proposed 
approaches also achieve better performance compared to the 
original SORA method (Approach 0). It is noted that the 
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magnitude of coefficients of variations, xr , has some impact on 
the efficiency of all methods except Approach 2, which is 
shown to be the most efficient in all cases.  This is reasonable 
because Approach 2 predicts the new IMPP by linearizing the 
limit state function.  Since the original constraints are all linear, 
Approach 2 requires at most 3 cycles (including one cycle for 
convergence check) to find the final optimal solution no matter 
how large the variance is.  On the other hand, Approaches 1 
and 3 are just as efficient as Approach 2 when the coefficient of 
variation is small; but require more cycles when the coefficient 
becomes larger.  The original SORA method and the DLP 
method generally requires more function calls when the 
coefficient becomes larger. 

( )

( )( )
( )
( )
( )
( )

21.061
8383
82101

027
082

0102
053

4,,10 .t.s

min
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624

5413

6312

211

3
65

3

2
421

≤≤≤≤
≤≤≤≤
≤≤≤≤

≥+−=
≥−−+=
≥+−−−=

≥−+−=
=≥≥

−
−

=

µµ
µµ
µµ

µµ
µ

µµµ

   
  

XXg
XXXg

XXXg
XXg

iRgP         

f

ii

x
x
x
x

x

x

L

.     (25) 

Table 1. Comparison for Example 1 ( ii µσ 02.0=  
and ii µσ 15.0= ) 

Cyc. ----- Cycles; F.C. ----- Function Call 
 

Table 2. Comparison for Example 1 (constant variation) 
 02.0=iσ  15.0=iσ  
Approach Cycles F.C. Cycles F. C. 

0 170 
1 170 
2 170 
3 

3 156 3 

172 
DLP N/A 828 N/A 2918 
 
The results of two cases with constant variances are 

presented in Table 2. Except the DLP method, all approaches 
converge to the same final optimal solution at Cycle 3. For 
larger variance, because all constraints are linear, the number of 
cycle doesn’t increase for all approaches.  On the other hand, 

the numbers of function calls increase in almost the similar 
amount because these additional function evaluations are all 
used for IMPP search in RA.  

 
4.2 PROBLEM 2 WITH NONLINEAR CONSTRAINTS 

Problem 2 is developed from the example introduced in 
[15] with two random design variables 1X , 2X . Both of them 
are normally distributed with means of 1µ , 2µ  and 
deviations 1σ , 2σ  respectively. The problem has three nonlinear 
constraints with the same desired reliability of 0.99865.  The 
formulation used by [15] is modified slightly here in the first 
constraint, which helps enlarge the feasible design region to 
explore the behaviors of our proposed approaches for large 
changing variances. The results with only two design variables 
facilitate the graphical illustration to help better understand the 
proposed approaches.  Problem 2 is again examined for two 
cases with different values of coefficients of variation.  The 
comparison of results from different approaches is provided in 
Table 3. 

( )
( )( )
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( ) ( ) ( )
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2
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1
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2
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 i        
XX
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XXg     

RgP       
f       

i
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≥−
++

=

≥−
−−

+
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=

≥−+=
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µµ

x

x

x
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. (26) 

Table 3. Results of Example 2 for constant variances 
const.=iσ  02.0=iσ  20.0=iσ  40.0=iσ  

Approach Cyc. F.C. Cyc. F.C. Cyc. F.C. 
0 279 
1 279 
2 276 
3 

3 77 3 107 4 

279 
DLP N/A 201 N/A 288 N/A 490 

 
Table 4. Results of Example 2 for changing variances 

iii r µσ =  02.0=ir  10.0=ir  20.0=ir  
Approach Cyc. F.C. Cyc. F.C. Cyc. F.C. 
0 6 119 13 241 18 728 
1 6 347 
2 4 250 
3 

 
3 
 

 
71 

 

 
3 
 

 
77 

 5 306 
DLP N/A 201 N/A 237 N/A 372 

 
Within the numerical tolerance of 0.02%, all approaches 

generate the same optimal results for constant and changing 
variances. From the results listed in Tables 3 and 4, it is noted 
that for all approaches, it generally needs more cycles and 
function calls to reach the final optimal solutions for cases with 
larger constant variances or larger coefficients of variation.  For 
problems with constant variance, all proposed approaches as 
well as the original SORA method are more efficient than the 
Double Loop Method. While dealing with changing variance, 

ir  Approaches x f Cyc. F.C. 
Approach 0 5 240 
Approach 1 3 187 
Approach 2 3 180 
Approach 3 3 173 

0.02 

Double 
Loop 

x=[1.0000,   
      8.0000,  
      3.0000,  
      8.0000,  
      6.0000,  
      1.3236] 

-24.3472 

N/A 951 

Approach 0 6 318 
Approach 1 4 235 
Approach 2 3 198 
Approach 3 4 235 

0.15 

Double 
Loop 

x=[1.0000,  
     3.6479,  
     3.0000,  
     8.0000,  
     1.7440,  
     0.2603 ]   

-20.1406 
 

N/A 1084 



 8 Copyright © 2005 by ASME 

the original SORA method is the most sensitive to the 
coefficient of variation. It requires much more cycles and 
function calls compared to the three proposed approaches when 
the coefficient becomes larger.  For problems with changing 
variance, because the variance is location-dependent, the exact 
IMPP becomes more sensitive to the location of a design, 
posing challenges for IMPP estimation.  Among all approaches, 
Approach 2 is shown to be the most effective in all cases.  In 
Fig. 5, we graphically illustrate the locations of the predicted 
(estimated) IMPPs and the exact IMPPs from cycle to cycle in 
the decoupled single loop process with the formulation used 
with Approach 2, for r = [0.2 0.2].  The IMPPs illustrated are 
only associated with g2, an active constraint at the optimal 
solution.   

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

X1

X
2

Con 1
Con 2
Exact IMPP
Pred. IMPP
X

E1 P1 
X1 

X2 
P2 

E2 

X3 
X4 

P3 

E3 P4 

E4 

Slope @
 E2

Slope @
 E3 

 
Figure 5. History of predicted and exact IMPPs with Approach 

2 (Example 2) 
 

The numbers 1 to 4 in Fig. 5 denote the cycle numbers 
from 1 to 4. X, P and E refer to the design point (obtained from 
DO), predicted IMPP (using Approach 2), and the exact IMPP 
(verified by RA), respectively.  The feasible region is between 
the boundaries of constraints 1 and 2. In the first cycle, since no 
information of IMPP exists, the IMPP is set as the design point.   
The exact IMPP (E1) verified from the RA shows that E1 
deviates from P1.   The information of E1 is used to predict the 
IMPP in the next cycle (P2).  It shows that P2 sits exactly on 
the boundary of equivalent deterministic constraint 2.  
However, after RA, it is found that the exact IMPP (E2) locates 
in the infeasible region.  In Cycle 3, the information of E2 is 
used to predict P3.  It shows that the predicted P3 is quite close 
to the exact one (E3), almost overlapping with each other on 
the constraint boundary.  Cycle 3 brings an infeasible solution 
back to a feasible one. The final cycle (cycle 4) provides the 
convergence check of the optimal result. The locations of P4 
and E4 almost overlap with those of P3 and E3.  From this 
illustration, we note that Approach 2 works quite effectively 
even though the locations of design point X vary quite a lot and 
the variance is large from cycle to cycle. From the plot of the 
slopes of the constraint functions at the exact IMMPs in cycles 
2 and 3, i.e., E2 and E3, respectively (dash lines in Fig. 5), we 
see that the slopes at these two IMMPs are almost identical 
even though the design point has moved quite a lot.  This 

matches with the assumption used in Approach 2 for IMPP 
prediction and results in good estimations.   
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Figure 6. Discrepancy of the estimated and exact IMPPs 

( 20.0=ir ) 
To compare the effectiveness of the IMPP estimation using 

different approaches, the discrepancies of the estimated IMPPs 
and the exact IMPPs are plotted in Fig. 6. All the discrepancies 
are described in terms of the distances between the estimated 
and the exact IMPPs. Discrepancies of all approaches in the 
first cycle are the same because the IMPP is initially set as the 
design point and the DO produces the same result. All 
discrepancies go down to zero with the increase of cycles, 
indicating all approaches are able to converge and to finally 
match the estimated and the exact IMPPs despite the different 
cycles needed. Compared to the original SORA approach 
(Approach 0), Approaches 1, 2 and 3 have significantly 
improved the efficiency.  There is a little oscillation in the 
curve of Approach 0 before the discrepancy vanishes. That is 
because the shifting vector used in the original SORA method 
does not bring the change of design point and the effect of 
changing variance into account. In the first several cycles, 
because the design points differ a lot compared to the later 
cycles, the effect of changing variance causes relatively larger 
discrepancies in prediction.  Approaches 2 and 3 provide better 
estimations of the IMPP compared to Approach 1.  Overall, 
Approach 2 is shown to be the most efficient.   
 
4.3 A VESSEL DESIGN EXAMPLE 

In this example, the task is to design a specified type of gas 
vessel working under a given pressure. The problem 
formulation (Eqn. (27)) is derived from the example used in 
[28]. The optimization problem is to find the wall thickness t, 
inner radius R and the mid-section length L, all considered as 
normally distributed random variables with changing variance 
due to the randomness in the manufacturing process. The 
design objective is to obtain the maximum volume, while 
avoiding the yielding of material in both the circumferential 
and radial directions when loaded with an internal pressure P, a 
random parameter with constant deviation of 10 lbs.  Geometric 
constraints are specified as a part of the problem. The material 
is given as UNS G101000 HR, with a yielding strength of 
26,000 psi. Due to the nonidentical properties of the material, 
the effective yielding stress Y is considered as a random 
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parameter with the mean as the half of the nominal yielding 
stress; the variance is given as a constant 260 psi.  
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Various approaches are used to solve the problem by assuming 
that the variances of all three design variables ][ L  R  t=x  are 
changing with the coefficients r = [0.2  0.2  0.1].  

Table 5. Comparison of approaches for Example 3 
 [ t, R, L, f ] = [2.0000   6.1398   36.383   5278.3] 

Approach  0 1 2 3 DLP 

Cycles 7 4 4 4 N/A 
Fun. Call 432 293 306 316 1481 

 
Table 5 lists the comparison of results for R= 99.865%, set 

for all constraints. All the single loop approaches require much 
less cycles to reach the same optimal solution than the double 
loop method. The three proposed approaches are more efficient 
than the original SORA method, even though it is not clear 
among these three approaches which one is superior to the 
others for this example problem. Because the problem is 
nonlinear, it takes all approaches more than 3 cycles to reach 
the optimal solution.  
 

In the vessel design example, we considered a random 
design parameter, the internal pressure P, that has constant 
mean and deviation. When implementing the proposed 
approaches, the random parameters can be treated as special 
cases of random design variables with constant means and fixed 
variances. Based on the formulations of different approaches, 
we find that except approach 2, all other approaches set the 
IMPPs of random parameters in a new cycle as the exact IMPPs 
from the previous cycle, i.e. kk

IMPPIMPP pp ≈+1 . In our 
implementation, to focus on the comparision of IMPPx  
estimations, Approach 2 employs the same approximation for 
IMPPs of random parameters as the other approaches.  
 
 
5. CONCLUSIONS 

In this paper, to accommodate the effect of changing 
variance in probabilistic design, three different approaches are 

developed to enhance the SORA method. These methods share 
the common strategy as the original SORA method under 
which the double loop probabilistic optimization is decoupled 
into cycles of single loop deterministic optimization (DO) 
followed by reliability assessment (RA).  The three new 
approaches deviate in the formulation of the DO, in particular 
in the formulation for predicting the IMPP in a new cycle. By 
examining the mathematical principles and through empirical 
studies, we find that our proposed approaches inherit the high 
efficiency of the original SORA, while improving the 
efficiency of solving probabilistic optimization problems with 
changing variance.  
 

The three new approaches are distinguished by the 
different strategies of IMPP estimations. Among them, the 
Approximated IMPPu  Approach (Approach 1) approximates 
the IMPP at a new cycle k+1 by replacing 1+k

IMPPu  in the IMPP 
equation by k

IMPPu  and updating the mean and variance 
information based on the location of the new design point. 
Since the IMPP in the u-space often changes when the design 
point changes, this estimation is quite rough. Approach 1 is 
shown to be the least efficient among the three new approaches.  
 

The Direct Linear Estimation Formulation (Approach 2) 
provides the estimation of the IMPP in a new cycle using the 
slope information of the linearized limit state function 
expanded at the exact IMPP from the previous cycle, in 
addition to updating the mean and variance information at the 
new design point.  Approach 2 is shown to be the most efficient 
method in the examples tested, especially when the changing 
variance is large. For problems with all active constraints being 
linear, it takes Approach 2 three cycles to converge (including 
convergence check) no matter the magnitude of variance.  
Approach 2 also has excellent behavior for nonlinear 
constraints as illustrated in this paper. Through the empirical 
study, we find that Approach 2 works effectively because in 
most applications the slope of the limit state function does not 
change too much even when the design point varies.  This is the 
reason why Approach 2 provides a good estimation of a new 
IMPP.  
 

The Quasi First Order Approximation of IMPPx  
Formulation (Approach 3) provides the estimation of an IMPP 
by employing the first-order Taylor expansion at the exact 
IMPP from the previous cycle.  The derivative information is 
obtained by linearizing the limit state function; the mean and 
variance information are also updated at the new design point.  
Because Taylor expansion is only a local expansion in a small 
neighborhood of the expanding point, the estimation is shown 
to be less accurate in the first several cycles (when the design 
point varies significantly) compared to the later cycles (when 
solution converges). Our empirical study shows that the overall 
efficiency of Approach 3 is the second among the tested 
approaches. The accuracy of Approach 3 can be further 
improved by introducing high-order derivatives in Taylor 
expansion, a topic for future work.  

 
In conclusion, our study further illustrates that the strategy 

used in SORA for decoupling deterministic optimization and 
reliability assessment is an effective approach for improving 
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the accuracy in IMPP estimation because a new IMPP 
estimation is always based on the exact IMPP from the 
previous cycle.  All three proposed approaches overcome the 
limitation of the original SORA method by incorporating the 
information of changing variance.  Among them, the Direct 
Linear Estimation Formulation (Approach 2) is shown to be the 
most effective for the problems tested. The insight gained from 
our study on the applicability of different approaches can be 
extended and utilize in other probabilistic optimization 
strategies that require MPP or IMPP estimations.  
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