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Abstract 
Traditional Multidisciplinary Design Optimization 

(MDO) generates deterministic optimal designs, which 
are frequently pushed to the limits of design constraint 
boundaries, leaving little or no room to accommodate 
uncertainties in system input, modeling, and simulation. 
As a result, the design solution obtained may be highly 
sensitive to the variations of system input which will 
lead to performance loss and the solution is often risky 
(high likelihood of undesired events). Reliability-based 
design is one of the alternative techniques for design 
under uncertainty. The natural method to perform 
reliability analysis in multidisciplinary systems is the 
all-in-one approach where the existing reliability 
analysis techniques are applied directly to the system-
level multidisciplinary analysis.  However, the all-on-
one reliability analysis method requires a double loop 
procedure and therefore is generally very time 
consuming.  To improve the efficiency of reliability 
analysis under the MDO framework, a collaborative 
reliability analysis method is proposed in this paper.  
The procedure of the traditional Most Probable Point 
(MPP) based reliability analysis method is combined 
with the collaborative disciplinary analyses to 
automatically satisfy the interdisciplinary consistency 
in reliability analysis.  As a result, only a single loop 
procedure is required and all the computations are 
conducted concurrently at the individual discipline-
level. Compared with the existing reliability analysis 
methods in MDO, the proposed method is more 
efficient and therefore provides a cheaper tool to 
evaluate design feasibility in MDO under uncertainty.  
Two examples are used for the purpose of verification. 
 

1. Introduction 
 

Multidisciplinary Design Optimization (MDO)1 
has become a systematic approach to the optimization 

of complex, often coupled engineering systems. Here, 
“multidisciplinary” refers to the different aspects that 
must be included in designing a system that involves 
multiple interacting disciplines, such as those found in 
aircraft, spacecraft, automobiles, and industrial 
manufacturing applications. Numerous successful 
examples of MDO applications have been found in 
many areas, such as Electromagnetics2, High Speed 
Civil Transport Design3, 4, Space Vehicle Design5, 
Aerospike Nozzle Design6, Rotor Design7, 8, Integrated 
Controls-Structures Design9, Integrated Circuit 
Design10, and Automobile Design11.  

However, the traditional MDO generates 
deterministic optimal designs, which are frequently 
pushed to the limits of design constraint boundaries, 
leaving little or no room for accommodating 
uncertainties in system input, modeling, and simulation. 
As a result, the design solution obtained may be 1) 
highly sensitive to the variation of system input which 
will lead to performance loss and risky (high likelihood 
of undesired events), or 2) conservative and therefore 
uneconomic if the deterministic safety factors are 
utilized.   

To overcome the drawbacks of deterministic MDO, 
techniques for uncertainty analysis under the MDO 
framework have been proposed and have been getting 
much attention12. In recent developments, some 
preliminary results of multidisciplinary design under 
uncertainty are reported12-17. In these works, the mean 
and variance of system performance are evaluated 
through uncertainty analysis and then utilized to obtain 
optimal solutions based on robustness considerations.  
For example, in Du and Chen’s work12,16, the system 
uncertainty analysis (SUA) and the concurrent 
subsystem uncertainty analysis (CSSUA) methods are 
proposed to evaluate performance variances taking into 
account the multidisciplinary design framework. In 
Gu’s work17, the “worst case” concept and the first-
order sensitivity analysis are used to evaluate the 
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interval of the end performance of a multidisciplinary 
system.  Even though the mean, the variance, and the 
interval of system performance are sufficient to 
evaluate the robustness of a design objective, they are 
generally not rigorous to be used for formulating the 
design feasibility (design constraints) under uncertainty. 
The ideal formulation of the design feasibility under 
uncertainty is the use of probabilistic constraints or the 
so-called reliability-based constraints wherein the 
design feasibility is modeled by the probability of 
constraint satisfaction (reliability)18 and wherein the 
complete shape of a performance distribution, 
especially that at the tail, is taken into account.  

Recently, much attention has been turned to the 
development of procedures to couple reliability analysis 
and MDO19-21.  In the work of Sues19, response surface 
models of system output are created at the system level 
to replace the computationally expensive simulation 
models. Using the response surface models, reliability 
analysis is conducted for MDO under uncertainty. The 
drawback of using this approach is the cost associated 
with generating an accurate response surface model 
over a large parameter space (for both deterministic and 
random variables). Besides, some of the response 
surface methods tend to “smooth” a performance 
behavior.  

A framework for reliability-based MDO was 
proposed in Ref. 20. In their work, the reliability 
analysis is decoupled from the optimization. 
Reliabilities are computed initially before the first 
execution of the optimization loop, and then updated 
after the optimization loop is executed. However, in the 
optimization loop, approximate forms of probabilistic 
constraints are used. To integrate the existing reliability 
analysis techniques into the MOD framework, a more 
tightly, multi-stage, and parallel implementation 
strategy of probabilistic design optimization was 
utilized by Koch, et al. 21. Nevertheless, in all these 
existing frameworks, most computations are spent on 
the reliability analysis during the optimization process. 
The efficiency of reliability analysis dominates the 
overall efficiency of the whole design process. Since 
the reliability analysis in these design frameworks is 
usually conducted based on the system-level 
multidisciplinary analysis, as we will see next, two 
loops of iterative computations will be involved and as 
a result, MDO under uncertainty becomes much less 
affordable compared to deterministic MDO. 

To improve the efficiency of reliability analysis for 
MDO and eventually MDO under uncertainty, a 
collaborative reliability analysis method is proposed in 
this paper. In this method, the procedure of the 
traditional Most Probable Point (MPP) based reliability 
analysis method is combined with the collaborative 
disciplinary analyses to automatically satisfy the 
interdisciplinary consistency in reliability analysis.  As 

a result, only a single loop procedure is required and all 
the computations are conducted concurrently at the 
individual discipline-level. 

The paper is organized as follows. The general 
multidisciplinary system analysis is reviewed in Section 
2. In Section 3, the strategy of the traditional all-in-one 
reliability analysis for multidisciplinary systems is 
discussed and the large computational needs of this 
approach are highlighted. Our proposed collaborative 
reliability analysis method for multidisciplinary 
systems design is presented in Section 4 and two 
examples are used to illustrate the effectiveness of the 
proposed method in Section 5. Section 6 is the closure 
which highlights the effectiveness of the proposed 
method and provides discussions on its applicability 
under different circumstances.  

 
 
2. The Multidisciplinary System 
 

For simplicity, we use a 3-discipline system to 
present the method. The conclusions drawn based on 
the 3-discipline system can be easily generalized for an 
n-discipline system. Fig. 1 shows the 3-discipline 
system, where each box represents the analysis 
(simulation) that belongs to a discipline. sx  are the 
system input variables which are the input for all 
disciplines, also called sharing variables. ix  (i = 1, 2, 
and 3) are the input variables of discipline i.  sx  and ix  
are mutually exclusive sets. Note that in this paper, the 
bold font stands for a vector and a regular font stands 
for a scalar variable. Therefore, x represents a vector 
and x represents a variable or an element of vector x.  
In some circumstances, a bold font also represents a 
function vector as we will see later on.  )( jiij ≠y  are 
interdisciplinary linking variables, which are those 
functional outputs calculated in discipline i , at the same 
time, are required as inputs to discipline j. iz  are  
outputs of  discipline i.   

For discipline 1, the disciplinary input-output 
relations have the functional form 
 ) , , ,( 3121111 yyxxFz sz=  (1) 
 ) , , ,( 312111212 yyxxFy sy=  (2) 
 ) , , ,( 312111313 yyxxFy sy=  (3) 

Similarly, for disciplines 2 and 3, we have the 
disciplinary input-output relations 
 ) , , ,( 3212222 yyxxFz sz=  (4) 
 ) , , ,( 321222121 yyxxFy sy=  (5)  
 ) , , ,( 321222323 yyxxFy sy=  (6) 
and 
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Figure 1. A Multidisciplinary System 
 
  
 ) , , ,( 2313333 yyxxFz sz=  (7) 
 ) , , ,( 231333131 yyxxFy sy=  (8) 
 ) , , ,( 231333232 yyxxFy sy=  (9) 

 
The disciplinary analysis F maps disciplinary input 

into disciplinary output. F can be of analytical forms or 
black boxes of simulation tools. F are assumed to be 
independently solvable. Taking 1zF  as an example, 
given appropriate inputs ) , , ,( 31211 yyxx s for which the 
analysis is defined, we can compute the disciplinary 
output 1z  through disciplinary 1 analysis 

) , , ,( 3121111 yyxxFz sz= . 
The coupled multidisciplinary analysis system 

depicted in Fig. 1 reflects the physical requirement that 
a solution simultaneously satisfy the three disciplinary 
analyses22. We write the multidisciplinary analysis 
system as a simultaneous system of equations as 
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Solving the coupled equations (10) leads to a full 
multidisciplinary analysis and we call this analysis the 
system-level multidisciplinary analysis, or simply 
system-level analysis, in which the coupled disciplines 
give a physically consistent result. 

Without the consideration of uncertainty, a general 
MDO model is simplified as: 
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where f is the collaborative design objective, 
representing the function of system design variables xs 
and subsystem performance 3) and 2 1,(i '

i =z  which 
are part of the output z of discipline i.  

3) and 2 1,(i ''i =z  stand for those subsystem 
performance that are considered as design constraints. 

In many engineering problems, randomness is 
associated with system input variables xs and 
disciplinary input variables ix . Examples of the 
randomness include the random material properties, 
manufacturing tolerances, stochastic loads, and 
stochastic operation environments, that can be 
described by probabilistic distributions.  Since the 
output iz  (i = 1, 2 and 3) are functions of random input 
variables xs and disciplinary input variables ix , 

} ,{ '''
iii zzz =  are also random variables. For the same 

reason, all the linking variables yij are also random 
variables. This phenomenon rouses the issue of 
reliability which is concerned with the probability of 
the design feasibility for 0''

i ≥z .    
 

 
3. All-in-One Reliability Analysis Method for 

MDO 
 

With the existence of uncertainty, the deterministic 
MDO model (11) is reformulated as 
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The design feasibility under uncertainty is 

represented probabilistically such that the probability of 
the constraint satisfaction 0''

i ≥z  is greater than or 
equal to the desired probability Pi. The probability of 
the constraint satisfaction can also be called the 
reliability. As we will discuss next, the reliability 
assessment is a critical component of MDO under 
uncertainty that demands much more computational 
effort than deterministic MDO.  Efficient reliability 
analysis methods are therefore needed to suit the need 
of MDO.  To explain the all-in-one reliability analysis 
method, we need to first explain the concept of the 
Most Probable Point (MPP) method. 
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For simplicity of discussion, in this section we use 
z (a scalar) to represent any element of the disciplinary 
system output vector ''

iz , x to represent all the inputs of 
disciplinary analysis (including linking variables as the 
input of discipline i), and F to represent the disciplinary 
analysis corresponding to z.  For example, if we are 
interested in the reliability associated with one element 

1z  out of the disciplinary output vector ''
1z , we then use 

1zz = , ) , , ,( 31211 yyxxx s= , and 1zFF = . Therefore, 
disciplinary output of interest has functional 
relationship )(xFz = . In the reliability field, )(xFz =  
characterizes the function of a specific performance 
criterion z and is called a limit state function. The 
failure surface or the limit state is defined as cF =)(x  
or simply 0)( =xF . This is the boundary between the 
safe and failure regions in the random variables space. 
When 0)( >xF , the system (or the discipline) is 
considered safe and when 0)( <xF , the system can no 
longer fulfill the function for which it was designed. 
Fig. 2 shows the limit state for a two dimensional 
problem.  

 
 

x1 

x2 

Limit state equation F(x)=0 

Failure region F(x)<0 

Safe region F(x)>0 

 
Figure 2. Limit State Concept 

 
The probability of failure fp  is defined as the 

probability of the event that the system can no longer 
fulfill its function and fp  is given by 
 }0)P{F( <= xfp , (13) 
which is generally calculated by the integral 

 xx
x x dfp

Ff )(
0)(� � <

= � . (14) 

where )(xxf  is the joint probability density function 
(PDF) of x and the probability is evaluated by the 
multidimensional integration over the failure region 

)(xF .  
The reliability R is the probability that the system 

functions properly and it is given by 
 fpFPR −=>= 1}0)({ x . (15)  

It is very difficult or even impossible to 
analytically compute the multidimensional integration 
in (14). An alternative method to evaluate the 

integration is Monte Carlo simulation23. However, 
when the probability of failure fp  is very small or the 
reliability is very high (close to 1), the computational 
effort of Monte Carlo Simulation is extremely 
expensive (this will be demonstrated by the examples in 
Section 5). To overcome this difficulty, Hasofer and 
Lind 24 proposed the concept of the Most Probable 
Point (MPP) to approximate the integration.   

To make use of the MPP concept, the input random 
variables },,,{ 21 nxxx �=x (in the original design 
space, x–space) are transformed into an independent 
and standardized normal space },,,{ 21 nuuu �=u (u–
space). The most commonly used transformation is 
given by Rosenblatt 25 as 

 )]([1
iii xGu −Φ=       ( ni  ,  ,1 �= ), (16) 

where 1−Φ  is the inverse of a normal distribution 
and Gi is the cumulative distribution function (CDF) of 
xi. Eqn. (16) implies that the transformation maintains 
the CDFs being identical both in x-space and u-space. 

The limit state function is now rewritten as 
 0)()( == ux FF .     (17) 

To easily assess reliability, Hasofer and Lind24 
used the safety index β which is defined as the shortest 
distance from the origin to a point on the limit-state 
surface in u-space (Fig. 3).  Searching for β can be 
formulated as a minimization problem with an equality 
constraint: 

 
�
�
�

=
=

0)(subject to
)(min 2/1

u
uu

U

F

Tβ
 (18) 

 
The solution of this minimization problem MPPu  is 

called the Most Probable Point (MPP).  From Fig. 3, we 
see that the joint probability density function on the 
limit state surface has its highest value at the MPP and 
therefore the MPP has the property that in the standard 
normal space it has the highest probability of producing 
the value of limit state function )(uF  or the highest 
contribution to the integral (14) 26.  

 

u 1 

u 2 

f(u1, u 2) 

MPP 

β 

F(u)=0 

 
Figure 3. The MPP Concept 
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If the limit-state function )(uF  is linear, the 
accurate probability estimate at the limit state is given 
by the equation: 
 )(1}0)({ βΦ−=<= xFPp f .       (19) 

The above equation provides an easy 
correspondence between the probability estimate and 
the safety index or the shortest distance β.  Since (19) 
only utilizes the first order derivative of the limit state 
function, the method is called the First Order Reliability 
Method (FORM).  Higher-order adjustments can be 
adopted if the magnitude of the principal curvatures of 
the limit-state surface in the u-space at the MPP is 
large27.  Besides using optimization algorithms to solve 
problem (18), there exist many other MPP searching 
algorithms26 - 30 developed in the field of structural 
reliability.  

If the MPP based method applied directly to 
integrated multidisciplinary systems to evaluate the 
reliability, we call this approach all-in-one reliability 
analysis. In the following, we use one output of 
discipline 1, z1, as an example to present the method 
and illustrate the huge computational effort associated 
with this approach. Here, we expect to evaluate the 
probability of failure (design feasibility) in discipline 1 
and this is given by 

 
 }0) , , ,({}0)({ 31211111 <=<== yyxxx szzf FPFzPp (20) 
 

For a multidisciplinary system, since the 
distributions of inputs 21y  and 31y   (linking variables) 
are not known within the scope of discipline 1, we need 
to perform the system-level analysis to solve the linking 
variables 21y  and 31y , and eventually, the limit state 
function 1zF  becomes the function of system inputs 

), , ,( 321 xxxx s . Hence   
 }0), , ,({}0)({ 32111 <=<= xxxxx szzf FPFPp  (21) 

Based on Eqn. (21), the mathematical model to 
find the MPP is formulated as 

 

Minimize ( )2
1

uuT=β  
 DV= ) , , ,( 321s uuuuu =         (22) 

Subject to 0) , , ,( 32111 == uuuu szFz   
       DV - design variables 
 

where 321s  and , , , uuuu  are random variables in u-
space corresponding to random design variables 

321s  and , , , xxxx  in x-space. 
 

Due to the coupling nature of a multidisciplinary 
system, as illustrated in Fig. 4, there are two loops 
involved in solving the problem in (22) if an all-in-one 

approach is used. The outer loop is the minimization 
wherein the reliability index β is minimized (left box in 
Fig. 4) and the inner loop is the system-level analysis 
which is used to evaluate constraint function 

) , , ,( 3121111 uuuu szFz = (right box in Fig.4). As 
discussed in Section 2, the system-level analysis is an 
iterative process where a simultaneous system of 
equations (10) is solved. Due to the close-loop 
condition, a number of individual disciplinary analyses 
are often required to solve a system of equations in 
order to achieve the compatibility between individual 
disciplines.  

 
 
 

z1 

MPP Search Algorithm
or Optimizer 

Min ( )2
1

uuT=β  

s.t. 01 =z  
) , , ,(DV 321s uuuuu ==

us,u1,u2,u3 

Disciplinary 
Analysis 1 

Disciplinary 
Analysis 2 

Disciplinary 
Analysis 3 

System-Level 
Analysis 

 
 

Figure 4. MPP Search Using the All-in-One Method 
 
 
The advantage of the all-in-one reliability analysis 

is that it is easy to link the existing reliability analysis 
methods and computer programs to an all-in-one 
multidisciplinary system analysis. However, the 
efficiency of this method is not satisfactory since it 
needs many individual disciplinary analyses for system 
level convergence.  To locate the MPP, the optimizer or 
the MPP search algorithm (outer loop) in Fig. 4 requires 
certain numbers of function evaluations for constraint 
function 1zF  and each function evaluation of 1zF  is one 
system-level analysis (inter loop) which requires a 
number of disciplinary analyses. As a result, the total 
number of individual disciplinary analyses can be very 
high. Suppose the number of function evaluations 
required by the outer loop optimization for MPP search 
is Nopt and the average total number of disciplinary 
analyses for each system-level multidisciplinary 
analysis is Ndisp, the total number of disciplinary 
analyses Ntotal becomes 
 dispopttotal NNN =  (23) 
 

To improve the efficiency of the reliability analysis 
for multidisciplinary systems, we propose a 
collaborative reliability analysis method which does not 
require any system-level analysis and significantly 
reduces the number of individual disciplinary analyses. 
The proposed method will be presented in detail in the 
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next section and demonstrative examples will be given 
in Section 5. 

 
 

4. The Collaborative Reliability Analysis for 
Multidisciplinary Systems 

 
To reduce the total number of system level and 

subsystem level analyses, we use a single loop strategy. 
The optimization loop for MPP search and the system-
level multidisciplinary analysis loop are combined to 
avoid the nested loops. The compatibility conditions for 
disciplines are formulated as constraint functions in the 
optimization model. By doing this, there is no need for 
maintaining the compatibility among disciplines in each 
function evaluation in the MPP search process as the 
all-in-one reliability analysis method. The compatibility 
will be achieved progressively in the process of the 
optimization for MPP search and will be satisfied 
eventually at the located MPP.  

For the same problem presented in last section, the 
MPP searching problem is reformulated as 

 

Minimize ( )2
1

uuT=β  
DV= { }323123211312  , , , , , , yyyyyyu   
and ) , ,( 321 uuuu =  
Subject to 
  0) , , ,( 3121111 == yyuuszFz        (DA1)  

0) , , ,( 312111212 =− yyuuFy sy    (DA1) 
0) , , ,( 312111313 =− yyuuFy sy     (DA1) 

0) , , ,( 321222121 =− yyuuFy sy   (DA2)       (24) 
0) , , ,( 321222323 =− yyuuFy sy   (DA2) 
0) , , ,( 231333131 =− yyuuFy sy   (DA3) 
0) , , ,( 231333232 =− yyuuFy sy   (DA3) 

DV - design variables 
 DA – Disciplinary analysis  
 
The first equality constraint is the limit state 

function at its limit state. The remaining equality 
constraints stand for the interdisciplinary consistency 
conditions in (10). All the linking variables are also 
included as part of design variables. It should be noted 
that all the linking variables need to be transformed  
into the u-space. The proposed strategy is illustrated in 
Fig. 5 from which we see that the optimization for MPP 
search interacts with individual subsystem analyses 
separately but there are no direct interactions among 
subsystems. Taking discipline 1 as an example, the 
optimizer passes the design variables y21 and y31 
(linking variables), as well as us (corresponding to 
system variables xs) and u1 (corresponding to 
disciplinary variables x1) to discipline 1. The 

disciplinary analysis 1 is executed to compute a part of 
its outputs ) , , ,( 3121112 yyuuF sy and 

) , , ,( 3121113 yyuuF sy which will serve as inputs of 
disciplines 2 (y12) and 3 (y13), respectively.  To maintain 
the interdisciplinary compatibility, the equality 
constraints are set as 0) , , ,( 312111212 =− yyuuFy sy  and 

0) , , ,( 312111313 =− yyuuFy sy  for discipline 1. 
Disciplines 2 and 3 work in the same way.  

 
 
 

Disciplinary 
Analysis 1 

Disciplinary 
Analysis 2 

Disciplinary 
Analysis 3 

us, u2, 
y12, y32 

Optimizer 

     Min ( )2
1

uuT=β  

     s.t. 01 =z       

) , , ,( 321s uuuuu =
jijiisijij ≠=−    0) , ,( yuuFy  

{ }323123211312  , , , , , , DV yyyyyyu=

F21, F23 F12, F13
us, u1, 
y21, y31 

us, u3, 
y13, y23 

F31, F32

 
 

Figure 5. MPP Search in Collaborative Reliability 
Analysis 

 
It is noted that with the proposed method, in the 

process of searching the MPP, only individual 
disciplinary analyses are required and no system-level 
multidisciplinary analysis is needed. All disciplinary 
analyses can be conducted concurrently which 
facilitates parellization. Since only one loop (the 
optimization loop for MPP search) is involved for 
iterative disciplinary analyses, compared with the all-
in-one reliability analysis method, the collaborative 
reliability analysis method in general needs much less 
disciplinary analyses and hence is more efficient.  
 

 
5. Examples 

 
Two examples are used to illustrate the 

effectiveness of our proposed reliability analysis 
technique for multidisciplinary systems design. These 
two examples have been used in Ref. 16 to demonstrate 
the moment matching method for robust 
multidisciplinary design optimization where only the 
first two moments (the mean and the variance) of 
system performance are generated. We use these 
examples herein again for more rigorous formulation 
under uncertainty (reliability analysis). To verify our 
proposed method, we consider two aspects, namely, 
efficiency and accuracy. For efficiency, we compare the 
total number of individual disciplinary analyses needed 
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for the proposed method with those for the all-in-one 
reliability analysis method. For accuracy, results from 
Monte Carlo Simulations with sufficient simulation 
sizes are considered as the reference solution for 
confirmation. The sequential quadratic programming 
(SQP) is used as the optimization search algorithm to 
locate the MPP in both collaborative reliability analysis 
and all-in-one reliability analysis.  
 
Example 1 
 

A multidisciplinary system is composed of two 
disciplines as shown in Fig. 6.  

 
 xs={x1} 

x1 ={ x 2, x 3} 
z1 ={z1} 

y12 ={y12} 

Discipline 1 
Fz1(xs, x1, y21) 
Fy12(xs, x1, y21) 

xs={ x 1} 
x1 ={x4, x5}  

z2 ={z2} 

y 21 ={y21} 

Discipline 2 
Fz2(xs, x2, y12) 
Fy21(xs, x2, y12) 

 
 

Figure 6. Example 1 
 

For discipline 1, the functional relationships are 
represented as 
 }{ 1xs =x , },{ 321 xx=x , }{ 12121 y== yy , }{ 11 z=z (25)    

 
)22

),,,(),,(

2132
2
1

213211221112

yxxx
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=yxxF
 (26) 

 
)2(

),,,(),,(
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232
2
1

2132112111

y

zsz

exxxxc
yxxxF

−+++−=
=yxxF

 (27) 

where c is a constant. 
 

 For discipline 2, the functional relationships are 
represented as 

}{ 1xs =x , },{ 542 xx=x , }{ 21212 y== yy , }{ 22 z=z  (28)    

 
125

2
441

125412112221 ),,,(),,(

yxxxx

yxxxFysy

+++=

=yxxF
  (29)    

 
)4.0(

),,,(),,(

1541

1254121222

xxxx

yxxxFzsz

++=

=yxxF
 (30)  

 
It is assumed that all the random variables x are 

normally distributed. The coefficient of variation 
(COV) of all the random variables is 0.1. The COV is 
the ratio of the standard deviation to the mean value.  

Two design points are arbitrarily chosen for 
reliability analysis. At design point 1 where the mean 

values of ) , , , ,( 54321 xxxxx=x  are 1) ,1 ,1 ,1 ,1(=xµ , the 
limit state function is considered with c=5, namely 

 )2(5 21
232

2
11

y
z exxxxF −+++−=  (31) 

The optimization problem for locating the MPP is 
formulated as follows 

Minimize ( )2
1

uuT=β  
DV= { }2112 y ,y ,u  and { }54321 u ,u ,u ,u ,u=u  
Subject to   

0),,,( 2132111 == yxxxFz z      (DA1) 
0),,,( 213211212 =− yxxxFy y    (DA1)            (32) 
0),,,( 125412121 =− yxxxFy y    (DA2)                  

 
The MPPs obtained from both the proposed 

method (collaborative method) and the all-on-one 
method are listed in Table 1. Both methods generate 
almost identical solutions. 

 
Table 1 MPP for Example 1 at Design Point 1 

Method uMPP=(u1, u2, u3, u4, u5) 

All-in-One 
Method 

(2.3477, 1.9013, 0.9507, -0.0002, 
-0.0001) 

Collaborative 
Method (2.3477, 1.9014, 0.9507, 0.0, 0.0) 

 
The reliability index β and the probability of 

failure pf from three methods are shown in Table 2. The 
collaborative method and the all-in-one method produce 
the identical results. For the all-in-one reliability 
analysis method, the number of subsystem disciplinary 
analyses is 437 and the number of system-level 
multidisciplinary analyses is 56. On average, each 
system-level multidisciplinary analysis needs 7.8 
disciplinary analyses. For the proposed collaborative 
reliability analysis method, the total number of 
disciplinary analyses is 152 and no system-level 
multidisciplinary analysis is needed. Therefore, the 
collaborative reliability analysis method is more 
efficient than the all-in-one reliability analysis method 
for this example. FORM (19) is used to calculate the 
probability of failure pf. It is noted that the probabilities 
of failure pf from both the all-in-one and  the 
collaborative reliability methods are very close to the 
point estimate of pf (in row 3) from Monte Carlo 
Simulation. In this case, the probability of failure pf is 
very small and the Monte Carlo Simulation needs a 
large sample size to obtain an accurate solution. The 
interval estimate of pf from Monte Carlo Simulation is 
also given in the footnote of the table.  



 8 
American Institute of Aeronautics and Astronautics 

The reliability analysis is also performed at design 
point 2 where the mean values }  , , , ,{ 54321 xxxxx=x  
are } 2 ,5 ,2 ,5 ,2{=xµ , the limit-state function is 
considered with c=22, namely 
 )2(22 21

232
2
11

y
z exxxxF −+++−=  (33) 

The results are listed in Tables 3 and 4.  At design 
point 2, the collaborative reliability analysis method is 
again more efficient than the all-in-one reliability 
analysis method. 

 
Table 2 Reliability Analysis Result for Example 1 at 

Point 1 

Method β pf 
Number 
of DA1 

Number 
of SA2 

All-in-One 
Method 3.1671 7.6978×10-4 437 56 

Collaborative 
Method 3.1671 7.6978×10-4 152 0 

MCS3 3.1708 7.60×10-4* – 107 

1DA – disciplinary analyses (subsystem) 
2SA – system-level multidisciplinary analyses 
3MCS – Monte Carlo Simulation 
*The 95% confidence interval of pf  is   

(7.1467×10-4, 8.0533×10-4) 
 

Table 3 MPP for Example 1 at Design Point 2 

Method uMPP=(u1, u2, u3, u4, u5) 

All-in-One 
Method 

(3.1328, 2.9819, 0.5962, -0.0001, 
0.0003) 

Collaborative 
Method (3.1329, 2.9818, 0.5964, 0.0, 0.0) 

 
Table 4 Reliability Analysis Result for Example 1 at 

Point 2 

Method β pf Number 
of DA 

Number 
of SA 

All-in-One 
Method 

4.3660 6.3274×10-6 385 62 

Collaborative 
Method 

4.3660 6.3274×10-6 136 0 

MCS1 – 6.40×10-6 – 107 

1The 95% confidence interval of pf is (5.9840×10-4, 
6.8160×10-4) 
 

Example 2 – Electronic Packaging Problem 

The electronic packaging problem12, 31, 32 is a 
benchmark multidisciplinary problem comprising the 
coupling between electronic and thermal subsystems. 
Component resistances (in electronic subsystem) are 
affected by operating temperatures in (thermal 
subsystem), while the temperatures depend on the 
resistances. The subsystem relationship is demonstrated 
in Fig. 7.  

 

Electronic 
Subsystem 1

Thermal 
Subsystem 2

x5, x6, x7, x8 
y6, y7 

y11, y12, y13 

x1, x2, x3, x4 

f, h, g1, g2 

 
 
Figure 7. Information Flow - Electronic Packaging 

Problem 
 

The system analysis consists of the coupled 
thermal and electrical analyses. The component 
temperatures calculated in the thermal analysis are 
needed in the electrical analysis in order to compute the 
power dissipation of each resistor. Likewise, the power 
dissipation of each component must be known in order 
for the thermal analysis to compute the temperatures.  

There are eight random input variables x1– x8, five 
linking variables y6, y7, y11, y12, y13, and four system 
outputs f, h, g1, and g2.  

The sets of variables and functions in the two 
subsystems are shown as follows, where }{φ  stands for 
an empty set. 

 
Electronic Disciplinary Analysis: 
Input variables: }{φ=sx , },,,{ 87651 xxxx=x  
Linking variables: },{ 7621 yy=y  
Outputs: },,,{ 211 gghf=z  
Thermal Disciplinary Analysis: 
Input variables: }{φ=sx , },,,{ 43212 xxxx=x  
Linking variables: },,{ 13121112 yyy=y  
Outputs: }{2 φ=z  
 
Of the two subsystems, the thermal analysis is 

more complex, which requires a finite difference 
solution for the temperature distribution calculation. 
The remaining equations in the thermal subsystem are 
solved algebraically. All equations of the electrical 
system are solved algebraically. 

g1 and g2 are considered as the limit state functions, 
which are the differences of the component temperature 
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and the allowable temperature. We assume 
uncertainties are associated with the input variables xi (i 
= 1, …, 8), described by normal distributions. The 
variation coefficient (the ratio of the standard deviation 
over the mean) of xi is 0.1.  

Table 5 Reliability Analysis Result for Example 1 
for Limit State Function g1 

Method β pf 
Number 
of DA 

Number 
of SA 

All-in-One 
Method 2.7082 3.3825×10-3 367 112 

Collaborative 
Method 2.7127 3.3369×10-3 111 0 

MCS1 2.7144 3.320×10-3 – 106 

1The 95% confidence interval of pf is (3.2254×10-3, 
3.4146×10-3) 
 

Table 6 Reliability Analysis Result for Example 1 
for Limit State Function g1 

Method β pf 
Number 
of DA 

Number 
of SA 

All-in-One 
Method 3.0779 1.0×10-3 531 164 

Collaborative 
Method 3.0738 1.1×10-3 169 0 

MCS1 3.0357 1.15×10-3 – 106 

1The 95% confidence interval of pf is (1.0943×10-3, 
1.2057×10-3) 
 

At the design =},,,, , , ,{ 87654321 xxxxxxxx  
0.065} 505.0, 0.0065, 505.0, 0.0275, 0.055, 0.08, {0.08, , 

the reliability index β and the probability of failure pf 
from three methods for both limit states are shown in 
Tables 5 and 6 respectively. For limit state function g1, 
the collaborative method and the all-in-one method 
produce very close results. For the all-in-one reliability 
analysis method, the total number of subsystem 
disciplinary analyses is 367 and the number of system-
level multidisciplinary analyses is 112, while the 
collaborative reliability analysis method uses only 111 
subsystem disciplinary analyses and zero system-level 
multidisciplinary analysis. In this sense, the 
collaborative reliability analysis method is more 
efficient than the all-in-one reliability analysis method. 
FORM is used to calculate the probability of failure pf. 

It is noted that the probabilities of failure pf from both 
the all-in-one and the collaborative reliability methods 
are very close to the one from Monte Carlo Simulation. 
For limit state function g2, we have the similar 
conclusion. The collaborative method requires only 169 
subsystem disciplinary analyses while 531 disciplinary 
analyses are used by the all-in-one method.  
 

6. Concluding Remarks 
 

In the traditional all-in-one reliability analysis 
method, the optimizer for locating the MPP repeatedly 
calls the limit state function which is evaluated at 
system-level wherein a number of individual 
disciplinary analyses are performed.  Two nested loops 
are therefore involved in an all-in-one reliability 
analysis.  The outer loop is the minimization problem 
for MPP search and the inner loop is the system-level 
analysis. The number of design variables of the 
minimization problem of an all-in-one reliability 
analysis is equal to the total number of random system 
input variables and random disciplinary input variables 
for all disciplines.   

In contrast with the all-in-one reliability analysis, 
the collaborative reliability analysis method developed 
in this paper only employs a single optimization loop 
for MPP search. The interdisciplinary consistency (the 
system of simultaneous equations) is embedded  in the 
optimization model for MPP search as equality 
constraints. In the process of searching the MPP, the 
interdisciplinary consistency is satisfied progressively. 
By this way, computations can be conducted 
concurrently at the individual disciplinary level. The 
design variables in the optimization for locating the 
MPP are random system input variables and random 
disciplinary input variables for all disciplines, as well as 
all the linking variables. Even though larger number of 
design variables (the difference is the total number of 
linking variables) may lead to more function 
evaluations in MPP search, the overall efficiency of the 
collaborative reliability analysis is generally superior to 
the all-in-one reliability analysis as demonstrated by the 
two examples in Section 5 due to the single loop 
procedure.  

As for accuracy, both methods generally produce 
the same reliability estimations since both are based on 
the MPP concept for reliability assessment.  It should 
be noted that besides the consideration of efficiency, 
depending on the existing computational framework for 
multidisciplinary analyses, one or the other method 
could be more favored.  For instance, with the all-in-
one reliability analysis, it is easier to integrate the 
existing reliability analysis methods/programs with an 
MDO framework where multidisciplinary analyses 
have been integrated at the system level.  With the 
collaborative reliability analysis method, the 
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optimization problem for MPP search with 
interdisciplinary consistency needs to be customized by 
a designer.  However, the collaborative reliability 
analysis method could be more favored under a 
distributed computing environment.  It should also be 
noted that both methods in principle are gradient based 
and therefore the computational effort is approximately 
proportional to the number of random input variables 
(as well as linking variables for the collaborative 
method).  With extremely high problem dimensions, the 
Monte Carlo Simulation can be considered as an 
alternative31.   

The proposed method is demonstrated in this paper 
only for the purpose of reliability analysis under the 
MDO framework. When we perform MDO under 
uncertainty, for example, robust MDO and reliability-
based MDO, the techniques discussed herein can be 
utilized to evaluate any probabilistic objectives and 
probabilistic constraints. For MDO under uncertainty, 
the reliability analysis is called repeatedly by the MDO 
optimizer. In other words, the reliability analysis loop 
will be embedded in the optimization loop of the MDO. 
If the all-on-one reliability analysis method is adopted, 
the procedure of an MDO becomes a triple-loop. As a 
result, the computation will be prohibitively expensive. 
However, if we use the proposed collaborative 
reliability analysis method, only two-loop procedure is 
needed and therefore the computational burden is 
mitigated.  

No matter which reliability analysis method is 
employed, evaluating probabilistic constraint directly 
under MDO optimizer always introduces nested loops.  
As a part of the future work, we plan to develop more 
efficient strategies and methods, ideally, single-loop 
strategy, to suit the features of probabilistic design 
under the MDO environment. 
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