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ABSTRACT 

To overcome the limitations of existing variance-based 
methods for Probabilistic Sensitivity Analysis (PSA) in design 
under uncertainty, a new PSA approach based on the concept of 
relative entropy is proposed. The relative entropy based method 
evaluates the impact of a random variable by measuring the 
divergence between two probability density functions of a 
response. The method can be applied both globally over the 
whole distribution of a performance response (called global 
response probabilistic sensitivity analysis-GRPSA) and in any 
regional range of a response distribution (called regional 
response probabilistic sensitivity analysis-RRPSA). The former 
is the most useful for studying variable impact on robust design 
objective, while the latter provides insight into reliability 
constraints. The proposed method is applicable to both the 
prior-design and post-design stages, for variable screening and 
uncertainty reduction, respectively.  The proposed method is 
verified by numerical examples and industrial design cases. 
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1.  INTRODUCTION 
 It has been widely acknowledged that uncertainty is 
inevitable in a product development process. Robust design 
(Chen, et al., 1996; Du and Chen, 2000) and reliability-based 
design (Choi and Youn, et al., 2000, Du and Chen, 2002a) are 
two widely used probabilistic design methods that have gained 
wide attentions to ensure the quality of a product under 
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uncertainty. Robust design is used to minimize the effect of 
variations in controllable and/or uncontrollable factors without 
eliminating the sources of variations, while the reliability-based 
design has been widely applied to ensure that a system 
performance meets the pre-specified target with a required 
probability level. Though it is important to seek the optimal 
solution in probabilistic optimization, sensitivity analysis is 
also playing an important role to help designers gain more 
knowledge of the complex model behavior and make informed 
decisions regarding where to spend the engineering effort. 
 In deterministic design, sensitivity analysis is used to find 
the rate of change in the model output by varying input 
variables one at a time near a given central point, which 
involves partial derivatives and often called local sensitivity 
analysis. For design under uncertainty, sensitivity analysis has 
different meanings. The term probabilistic sensitivity analysis 
(PSA) is used because sensitivity analysis is performed with 
respect to the probabilistic characteristics of model inputs and 
outputs. In general, the probabilistic sensitivity analysis (PSA) 
is a study to quantify the impact of uncertainties in random 
variables on the uncertainty in the model output.  
 Among existing probabilistic sensitivity analysis methods, 
a popular category is the so-called variance-based methods for 
global sensitivity analysis (Sobol’, 1993, 2001; Chan, et al., 
1997; Saltelli, et al., 1999, 2000; Jansen, 1999; MacKay et al., 
1999). Based on the decomposition of the total variance of an 
output to various sources, sensitivity indices are defined as the 
global measures of the output variability over the entire range 
of the input variables. The variance-based methods can be used 
to study the impact of different variables on a performance 
where the input variables are described probabilistically. 
Obviously, variance-based methods can be applied directly into 
robust design problems where a part of the design objective is 
to reduce the performance variance across the whole range of 
performance distribution. However, those methods can not help 
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evaluate the effect of a random variable over a specific partial 
region of performance distribution, such as the failure region in 
the reliability-based design. The distinction is important 
because variables that have the most impact globally may not 
have the same criticality in the local region of failure, and vice 
versa. Furthermore, all variance-based methods share the same 
assumption that the second moment (performance variance) is 
sufficient to describe the uncertainties encountered. Such 
assumption may not always be valid, especially in the case 
where the performance distribution is highly skewed due to 
highly nonlinear functions or inputs with heavy-tailed 
distributions. 
 In this paper, we propose a relative entropy based PSA 
method that can be adapted to both global and regional 
sensitivity analyses and overcome the aforementioned 
limitations of variance-based methods.  Entropy (Cover and 
Thomas, 1991) as a measure of uncertainty associated with a 
random variable is a popular concept in the information theory 
literature. Entropy-based methods for sensitivity analysis of 
decision making have been investigated by several authors 
(Felli and Hazen, 1998). Ebrahimi, et al. (1999), made a 
comparison between entropy and variance in ordering 
univariate distributions. Mutual entropy, as a measure of 
uncertainty reduction, has been applied in the epistemic 
sensitivity analysis (Krzykacz-Hausmann, 2001; Frey and Patil, 
2002). However, the evaluation of the mutual entropy is not 
quite straightforward and may experience technical difficulties 
in its implementation. There are many ways to define entropy 
measures (see Jumarie, 1990); here, we adopt relative entropy 
measure which is commonly used as a divergence measure 
from one probability distribution to another. This concept is 
used in this work to capture the total impact of the input 
uncertainty on that of the output both globally and regionally.  
 The proposed method can be applied to different 
formulations of probabilistic design. In robust design, it can be 
used to identify random variables with the most contribution to 
the variation of a system response.  In the reliability-based 
design, it can be used to identify random variables with the 
largest impact on the reliability for given probabilistic 
constraints. Our work also shows that the proposed method can 
provide valuable information at different design stages. It can 
be used in the prior-design stage to screen out those variables 
that are probabilistically insignificant. It can also be applied in 
the post-design stage to determine the source of uncertainty 
reduction that will result in the most significant quality 
improvement. 

2.  TECHNICAL BACKGROUND 
 
2.1  Variance-Based Methods for PSA  

Similar to the concept as used in ANOVA, many of the 
variance-based methods decompose the total variance of an 
output Y=h(X) to items contributed by various sources of input 
variations X=[X1,X2,…,Xn], and then derive sensitivity indices 
as the ratios of a partial variance contributed by an stochastic 

input variable to the total variance of the output. Details of 
ANOVA decomposition for sensitivity analysis are provided in 
Chen et al. 2004.  In brief, the variance (V) of a response is 
decomposed into a summation of functions through an 
ANOVA-like way: 

n
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In Equation 1, V is the total variance in the model output. The 
first order terms iV  represent the partial variance in Y due to 
the individual effect of a random variable Xi, while the higher 
order terms show the interaction effects between two or more 
random variables. For example, ijV  is the partial variance in Y 
due to the interaction between two random variables Xi and Xj.  

The main effect index of a random variable Xi is obtained 
by the normalization of the main-effect variance over the total 
variance in Y as shown in Equation 2. Equation 3 gives the 
sensitivity index for the interaction between two random 
variables, Xi and Xj. A general sensitivity index is given in 
Equation 4.  
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When there is a large interaction between random 
variables, evaluation of main effects only is not enough. In 
such situation, the total effect of a random variable Xi, which 
includes its main effect and all the interaction effects involving 
Xi, is required to accurately describe its contribution. The total 
effect index is a useful summary measure when there are a 
large number of interaction terms for which their computations 
and interpretations may not be practical. By partitioning the 
variables to a subset of interest and its complementary, i.e., Xi 
and X~i, where the latter is the subset of all variable excluding 
Xi, then the total effect index (TSI) is given by 

iTi SS ~1−=                              (5) 
Many methods have been proposed to calculate the above 

main and total effect indices (including their variations). Most 
of the computation methods are sampling-based methods such 
as correlation ratio, various importance measures, and Sobol’. 
Jensen (1996) proposed alternative Monte Carlo approaches for 
the main and total effect indices. Another method, FAST, 
provides a new way to evaluate a variance by converting multi-
dimensional integral to a one-dimensional integral. Saltelli, et 
al. (1999) showed that sensitivity indices from FAST are 
equivalent to those from Sobol’, but with better computation 
efficiency. Chan, et al. (2000), showed that Jensen’s approach 
is better for the total effect while Sobol’ method is better for the 
main effect. In Chen et al. 2004, analytical formulations are 
derived via the commonly used metamodels such as polynomial 
function and Kriging models.  Since variance-based methods 
only study the impact of a probabilistic input on the variability 
(first and second moments) of an output, their use in design 
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under uncertainty can be limited.  In this work, we propose a 
PSA that suits various probabilistic design scenarios. 

 
2.2  Probabilistic Design Scenarios 

In the context of design under uncertainty, Probabilistic 
Sensitivity Analysis (PSA) is the study of the impact of 
uncertainties in both controllable and uncontrollable variables 
(i.e., control and noise factors, respectively). The word impact 
has different meanings under different probabilistic design 
scenarios. For robust design, PSA is to identify those random 
variables which contribute the most to the entire distribution 
(e.g., variance) of a response y.  For reliability-based design, it 
means the contributions of different sources of uncertainty to 
the probability of probabilistic constraints satisfaction, or often 
called as reliability requirements.  
 

Figure 1. Probabilistic Design Formulations 

In the robust design formulation in Figure 1, d
v

, xv  and pv  
are vectors of deterministic design variables, random 
controllable design variables, and random uncontrollable 
variables (i.e., noise factors), respectively. yµ , 

jgµ , and yσ , 

jgσ  are the mean and standard deviation of the objective and 
constraint performance, respectively. In the reliability-based 
design formulation, jR  is the desired probability of constraint 
satisfaction corresponding to jg . 

As shown in Figure 2, in robust design, because the design 
objective is to reduce the response variation, the full range 
distribution of a response, i.e., [-∞,+∞] or [yα, yβ] where yα and 
yβ are the response at α and β quantiles, respectively—is of 
interest for PSA. On the other hand, in the reliability-based 
design, the interest is on assessing the impact on preventing the 

failure in a partial region, say [-∞,yα].  Accordingly, we define 
two types of PSA methods:  

• Global response probabilistic sensitivity analysis 
(GRPSA) — PSA for the case that the interest is 
among the entire distribution of a response;  

• Regional response probabilistic sensitivity analysis 
(RRPSA) — PSA for the case that the interest is 
among a partial range of a response distribution. 

In the following discussion, we introduce the use of 
relative entropy as a unified measure to deal with both GRSPA 
and RRSPA. 

 
2.3  Kullback-Leibler Entropy 

The entropy-based measures for sensitivity analysis can be 
classified into two types. One is to measure the uncertainty 
reduction in a random output if a random input is perfectly 
known, such as the mutual entropy (Krzykacz-Hausmann, 
2001). The calculation of mutual entropy involves the joint 
probability density function (PDF) of random variables and 
thus it can be expensive to compute. The other type of entropy 
measure is to measure the divergence between the change of a 
distribution before and after the elimination of a random 
variable such as Kullback-Leibler (K-L) entropy (Kullback and 
Leibler, 1951) defined as 
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Kullback-Leibler entropy has the following properties (Csiszar, 
1975; Jumarie, 1990; Lin, 1991): 

• It is nonnegative. It is zero if and only if p1 and p0 are 
exactly the same.  

• It is not a true metric because the measure is not 
symmetric and it does not satisfy triangle inequality. 

• ∞=
0

log pp  and 00log0 =
p

 

Kullback-Leibler entropy is traditionally used to measure 
the divergence between two PDFs p1 and p0, which are the true 
and estimated distributions, respectively. The K-L entropy can 
be interpreted as the expectation of log likelihood of random 
variable y with a PDF of p1(y). It is noticed that Shannon 
entropy or differential entropy could be viewed as a special 
case of Equation 6, when p0 is a uniform probability density 
(mass) function. In other words, Shannon entropy, or called 
differential entropy in continuous case, could be viewed as the 
divergence from a PDF to a uniform distribution.  
 
3.  ENTROPY-BASED PSA METHOD 

Suppose a random response Y = h(X) has a PDF of p0, 
where X denotes a vector of random inputs, i.e., X = 
[X1,X2,…,Xn]. If a random input Xi is fixed to its mean value, 
or it is perfectly known (i.e., Xi is now treated as a 
deterministic variable), the PDF of Y becomes p1. Since Xi 
becomes a constant now, all impacts of the uncertainty in Xi are 
eliminated, including both the main effect of Xi and its 
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Reliability-Based Design 
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Figure 2. Global vs. Regional Response Range 

Response y takes values over 
the failure region [-∞, yL], 
such that P{y≤yL}= pf 

- ∞ yα - ∞ +∞ 

Regional Response yGlobal Response y 

Response y takes values over 
the whole range  [-∞, ∞]. 

+∞
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interaction with other random inputs. Therefore, the relative 
entropy provides the total effect of Xi on the distribution of Y. 
In this paper, only the equations for continuous situations are 
derived. For discrete cases, the integral will be simply replaced 
by a summation.  

For GRPSA, we propose a K-L entropy based method as 
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where, ix  means fixing Xi at a value, usually chosen at its 
mean, 

ixµ . Equation 7 measures that over the entire range of y, 
how much the PDF of Y changes after reducing the total 
variability in Xi. ( )01 | ppD

iKLx  is the total effect index of Xi. 
The larger the ( )01 | ppD

iKLx , the more important the Xi is.  
A measure of the main effect of Xi can be obtained by fixing all 
other random variables except Xi in p1, as shown in Equation 8. 
Because ( )01~ | ppD

ixKL is actually the combined effect of the 
complimentary of Xi, the ( )01~ | ppD

ixKL  can be viewed as the 
reverse of the main effect of Xi, i.e., the smaller the 

( )01~ | ppD
ixKL , the more important the main effect of Xi is. It 

should be noted that ( )01~ | ppD
ixKL  itself is not the main effect, 

but can be used to interpret the main effect. 
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 One advantage of the K-L entropy approach is that the 
proposed method can also be used for RRPSA, with simple 
adjustments in the formulae. Because of the reason that will 
apparent later, we propose a modified K-L entropy so that the 
measure can be used for both GRPSA and RRPSA. For 
RRPSA, the integration range of y is changed to the region of 
interest [yL, yU], instead of [-∞, +∞] in Equations 7 and 8.  The 
total effect of Xi is defined as 
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where, the meanings of p0, p1, and xi are the same as above. yL 
and yU defines the lower and upper bounds of a region of y. 
Different from Equation 7, Equation 9 measures the absolute 
divergence between two distributions over a region of interest.  
The absolute value is used here because in a partial region of Y, 
the log-likelihood can take both positive and negative values at 
different values of y. The absolute value of log likelihood 
instead of direct use of Equation 7 is introduced because during 
integral calculation, the positive and negative log-likelihood 
values may cancel with each other. In that case, the relative 
entropy could be very small although there is actually large 
difference between p0 and p1. In addition, in Equation 9, p0 is 
used as a weighting factor applied in front of the log-
likelihood, instead of p1. The reason is that in a partial region 
such as the extreme tail of a distribution, the value of p1 could 
be very small, even approaching zero, which will diminish the 

actual effect of divergence. Similar to the GRPSA, Equation 9 
measures the total effect of Xi on Y over a range [yL, yU]. The 
larger the ( )01 | ppD

iKLx , the more important the total effect of 
Xi is. 
 Similarly, by fixing all the random variables except Xi in p1 
in Equation 9, we get an equivalent but opposite measure of the 
main effect of Xi, over [yL, yU], as shown in Equation 10. The 
smaller the ( )01~ | ppD

ixKL , the more important the main effect 
of  Xi is.  
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In the context of engineering design, PSA can be 
performed both in the prior-design and in the post-design stage 
to gain valuable information about the model and its 
probabilistic behavior. 

 
Prior-Design 

The goal of prior-design PSA is aimed to answer the 
following question: 

Which variable(s) could be safely eliminated without bringing 
much influence on the uncertainty in the response? 

The use of PSA in this stage is intended to reduce the size 
of a problem through variable screening, by generating an 
importance ranking of all variables. Based on the ranking, 
unimportant deterministic design variables are fixed at chosen 
values, i.e., treated as constants. Similarly, probabilistically 
insignificant random variables could be treated as deterministic 
variables, i.e., fixed at their mean values. It is noted that in the 
prior-design stage, we have no idea about the location of the 
design point. When applying the PSA at this stage, both the 
deterministic and random (controllable) design variables are 
considered to be uniformly distributed over their entire range, 
while random noise variables follow the pre-specified 
distributions.  

Post-Design 
Once a design solution is identified through the means of 

optimization, the focus of the PSA in the post-design stage is to 
answer the following question: 

Which random (noise) uncertainties should be further 
controlled (eliminated) to gain the largest improvement on the 
probabilistic performance of a response?  

An example of the above case is “tolerance design” where 
manufacturing precision is improved to reduce or eliminate 
variations. The post-design PSA is applied to decide and 
prioritize available resource to reduce the sources of variation. 
That is, variation control exercise should be spent on the 
variables with the highest importance because they contribute 
the most to the output variations. Conversely, tolerance 
requirements can be relaxed for noise factors with negligible 
effects to output variation.   



 5  Copyright © 2004 by ASME 

For the reliability-based design, a particular interest is on 
the sensitivity of the probability of failure (pf) or its 
complementary – the probability of success (i.e., reliability) (1-
pf). For a given design setting, the system has two possible 
outcomes: safe or unsafe, with probability of 1-pf and pf 
respectively (Reid, 2002). Applying relative entropy on this 
discrete event requires the calculation of expected value of 
entropies of both events. Therefore, the PSA for reliability is 
calculated based on the contributions of random variables to 
both the success and failure conditions, denoted 
as ( )ff

p
KLx ppD f

i
|ˆ , as follows:  

( ) ( )
f

f
f

f

f
fff

p
KLx p

p
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p
p

pppD f

i −
−
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logˆ1

ˆ
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where, fp is the original probability of failure of a 
performance. fp̂  is the probability of failure when fixing Xi at 
its mean value. Equation 11 is the total sensitivity index of Xi 
on the reliability. Similarly, by fixing all the random variables 
except the one of interest in fp̂ , ( )ff

p
xKL ppD f

i
|ˆ~  provides an 

equivalent measure of the main effect of xi. We view the 
formulation in Equation 11 as an alternative approach to the 
evaluation of uncertainty impact on the reliability formulated in 
Equation 9.  

 
4.  COMPUTATIONAL ISSUES 

The evaluations of the proposed K-L entropy measures 
(Equations 7-11) involve the estimation of two PDFs (po and 
p1) of a given response: one before and one after variance 
reduction in inputs. If the response performance is easy to 
compute, Monte Carlo simulations can be employed.  However, 
in real engineering applications with high-fidelity and 
expensive simulation models, the PDF estimation via Monte 
Carlo simulation is impractical or even impossible. Alternative 
approximation approaches can be used to overcome the 
computational barrier. One approach is to use the 
metamodeling techniques (Chen, et al., 2004) to build surrogate 
models as  approximations of high-fidelity models. Sampling 
techniques are then applied to the easy-to-compute 
metamodels. Based on samples, the PDF of a random response 
could be obtained by kernel density estimation (KDE) at any 
value of y defined as  

( ) ∑
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where K is a symmetric probability density function; δ is the 
window width or bandwidth; and n is the total number of 
samples (Sheather and Jones, 1991).  

As an alternative to the sampling-based methods, the PDF 
information could be obtained by the most probable point-
based uncertainty analysis (MPPUA) method (Du and Chen, 
2001) or the First Order Saddlepoint Approximation (Du and 
Sudjianto, 2004). The concept of the most probable point 
(MPP) is utilized to generate the cumulative distribution 

function (CDF) of a system output by evaluating probability 
estimates at a serial of limit states across a range of output 
performance. The PDF can then be derived as the derivative of 
the CDF. 

In practice, the choice of the metamodeling or the 
MPPPUA method will depend on the samples required to fit an 
acceptable metamodel and the computational needs for the 
MPPs search. In this paper, we use the KDE for PDF 
estimation based on the samples obtained through simulations, 
where the normal density is used as the kernel function in 
Equation 12. For the engineering design problems in Section 
5.2, metamodels are used for sampling instead of directly using 
the computationally expensive simulations. All other examples 
are mathematical examples with simple analytical equations.  
 
5.  VERIFICATIONS AND APPLICATIONS 
 There are four objectives in our verification study.  First, 
we want to verify whether our proposed entropy based 
approach for GRPSA will provide consistent results compared 
with the Sobol’ method.  We need to bear in mind that we do 
not expect the ranking of variables from the two methods are 
exactly the same because our proposed entropy based method 
shows the impact on the whole PDF of the response which 
includes higher order moment statistics , while the Sobol’ 
method provides the impact on the response variance (i.e., the 
second order moment).  The second objective is to gain some 
insight to understand in what situations the two methods will 
provide distinctively different rankings of variables. The third 
objective is to verify whether the alternative methods we 
propose for RRPSA (Equations 9 and 11) indeed provide the 
right ranking of variables in terms of their impact on improving 
the performance reliability. We verify our results by comparing 
the actual reliability improvement by variance-based reduction 
in each random variable. Finally, we want to examine whether 
our proposed methods can truly benefit the process of design 
under uncertainty. 
 
5.1  Numerical Examples 

(1)  GRPSA for A Nonlinear Model 
 Lets consider a simple quadratic model 2

321 xxxy +=  with 
three independent random variables X1, X2, and X3, all 
following uniform distributions over [-1,1]. Both the proposed 
GRPSA method in Equation 7 and the Sobol’ method (Sobol, 
2001) are applied to determine the main and total effects of 
each variable. The effects of different random variables are 
graphically illustrated in Figure 3. The differences between the 
original PDF curve of Y when all random variables vary and 
the PDFs of Y by fixing either X1, X2, or X3 indicates the total 
effects of X1, X2, and X3 respectively. The larger the 
difference, the higher the impact of a random variable is. The 
global sensitivity information obtained by both our method and 
the Sobol’ method is listed in Table 1. 
 We know from the explicit mathematical structure that X1 
and X2 are symmetric and independent with identical 
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distributions; therefore, they should have the same effect on the 
response Y.  This is evident in Figure 3, where the PDF of Y 
by fixing X1 at its mean value coincides exactly with the PDF 
by fixing X2 at the mean. Our results of GSA Table 1 match 
with this feature - both the main and the total effects of X1 and 
X2 are almost the same. For this particular example, both 
methods provide the same importance ranking of three 
variables based on either the main or the total effects. However, 
the ranking based on the main effect is different from that 
based on the total effect. In particular, the main effect of X3 is 
larger than that of X1 or X2, however, its total effect is slightly 
smaller than that of X1 or X2. These observations are consistent 
with the structure of the equation 2

321 xxxy += , where the 
interaction only occurs between X1 and X2. We should point 
out that 

ixKLD ~  itself is not the actual main effect. It is an 
equivalent but opposite measure that should be viewed in the 
same way as S~i in Equation 5. Finally, it should be noted that 
the K-L entropy based method can only provide the relative but 
not the absolute importance of random variables. It could not 
answer absolutely how much uncertainty in Y comes from a 
random variable Xi. On the other hand, the effect indices from 
Sobol’ method are absolute, normalized measures, or called 
quantitative measures by Saltelli (2000).  

Table 1. Comparison of GRPSA results  

 x1 x2 x3 

( )01~ | ppD
ixKL  - Main 4.0783 3.9953 0.2917 KL 

Entropy 
Based 
PSA ( )01 | ppD

iKLx  - Total 0.3783 0.3783 0.3523 

Main Effect Variance, Vi 0.0004 0.0003 0.0891 
Main Effect Indices, Si 0.0019 0.0017 0.4455 

Total Effect Variance, 
iTV  0.1112 0.1113 0.0891 

Sobol’ 
D=0.2 

Total Effect Indices, 
iTS  0.5560 0.5565 0.4455 
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Figure 3.  Comparison of impacts of uncertainty  

 
(2) GRPSA on Highly-Skewed Distribution of Y  
 Lets consider here another simple nonlinear model 

21 xxy = , where X1 and X2 both follow χ2 distributions with 

degrees of freedom as 10 and 13.978, respectively, shown in 
Figure 4. It can be seen from Figure 5 that the distribution of Y 
is highly-skewed with a long right tail. The impacts of 
uncertainties in X1 and X2 on the distribution of the response 
are  illustrated in Figure 5. The total effect indices of the two 
variables from our K-L entropy based method and the Sobol’ 
method are compared in Table 2.  From Table 2, it is noted X1 
is more important than X2 based on the relative entropy. 
However, the Sobol’ method shows that X1 and X2 are equally 
important. The graphical illustration of the divergence of the 
PDF curves indicates that the effect of X1 is higher, which 
means that the results from the relative entropy method are 
more trustworthy. This example shows that since the Sobol’ 
method only evaluates the second moment of a distribution, it 
is no longer a good measure of dispersion for highly skewed 
and heavily-tailed distributions. 

 Table 2. Comparison of the total effect indices  
 X1 X2 

KL entropy 
Based Method 

( )01 | ppD
iKLx , Total Effect 0.1571 0.0791 

Total Effect Variance, VTi 0.1676 0.1677 
Sobol’s Method

Total Effect Indices, STi 0.5462 0.5465 

     Figure 4.  Distributions of       Figure 5. Comparison of 
       random variables                  impacts  

(3)  Verification of RRPSA Methods 
 For the same model in the first example, we apply the 
RRPSA methods in Equations 9 and 11 for the post-design 
analysis in the reliability-based design. The three random 
variables follow a normal distribution with mean of 1.0 and a 
relatively large variance of 1.0. For a desired reliability 90%, a 
critical failure mode is defined as 068.02

321 ≥+= xxxy . We 
apply both Equations 9 and 11 in the failure region [-∞, 0.068] 
to identify the probabilistically important variables. We expect 
that the reduction of uncertainty in the most critical variables 
would lead to the largest improvement on the reliability.  

As observed from Figure 6, in the failure region, fixing X1 
or X2 will cause larger divergence in the distribution curve of Y 
than that by fixing X3. Therefore, X1 and X2 are more important 
than X3. This observation is confirmed by the sensitivity 
information listed in Table 3. The results are further verified by 
calculating the actual reliability improvement.  The last row in 
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Table 3 shows the improvement on the reliability if the 
uncertainty in a random variable could be eliminated 
completely. Although usually it is not possible to eliminate 
completely uncertainty in a random variable, the results are 
good indications of where to put efforts effectively to improve 
the reliability. 

Figure 6.  PDF of Y and the enlargement of the left tail 
 
Table 3.  Effects of random variables in the failure region 

 X1 X2 X3 

Eqn. 9:  ∫
∞−

068.0

0

1
0 log dy

p
p

p  0.1320 0.1324 0.0478 

Eqn. 11:   ( )ff
p

KLx ppD f

i
|ˆ  0.0128 0.0128 0.0074 

Reliability improvement 
after uncertainty reduction 4.43% 4.43% 3.44% 

 

5.2  Engineering Design Problems 

(1)  Robust Design for Engine Block and Head Joint 
Sealing Assembly 
 Engine block and head joint sealing assembly is one of the 
most crucial structural designs in the automotive internal 
combustion engine. As shown in Table 4, there are six 
deterministic design variables (x1-x6), and two random noise 
factors (P1 and P2) following normal distributions. For the 
confidentiality reason, the values of all variables and noise 
factors are normalized within [1,3]. The robust design objective 
is to minimize the gap lift of the assembly (x1-x6) as well as its 
sensitivity to manufacturing variation (P1 and P2).  The design 
is very complex involving multiple components with 
complicated geometry. To reduce the computational cost, a 
Kriging model is created for the gap lift based on the data from 
computer experiments. 
 Table 4. Design variables and parameters 

 Meaning Lower 
limit 

Upper 
limit µ σ 

x1 Gasket thickness 1 3 – – 
x2 Number of contour zones 1 3 – – 
x3 Zone-to-zone transition 1 3 – – 

x4 Bead profile 1 3 – – 
x5 Coining depth 1 3 – – 
x6 Deck face surface flatness 1 3 – – 
P1 Load/deflection variation 1 3 2 0.33 
P2 Head bolt force variation 1 3 2 0.33 

 We use this example to illustrate the effectiveness of the 
proposed K-L entropy based method (Equation 7) to reduce the 
dimensionality of a design problem in the prior-design stage. 
Since the optimal solution in unknown, we consider design 
variables (x1-x6) following uniform distribution within their 
allowable range. The noise variables, P1 and P2 , follow their 
pre-specified (normal) distributions. The sensitivity information 
obtained by our proposed K-L entropy-based method is shown 
in Table 5, and compared to that from the Sobol’ method shown 
in Table 6. The importance ranking of all variables is shown in 
Figure 7. 
 
 Table 5.  Main and total effects from by KL based method 

 1x  2x  3x  4x  5x  6x  1P  2P  
Main Effect 

ixKLD ~  0.4589 0.406 6.523 11.030 3.300 0.647 9.589 2.559

Total Effect 

iKLxD  0.3334 0.121 0.0 0.0 0.0 0.195 0.0 0.006

  

 Table 6.  Main and total effects from Sobol’ method 

 1x  2x  3x  4x  5x  6x  1P  2P  
Main Effect 

iV  0.203 0.020 0.001 0.001 0.004 0.081 0.001 7.51e-5

Total Effect 

iTiV  0.351 0.064 1.66e-6 2.03e-6 0.010 0.248 6.47e-7 0.007

 

Figure 7.  Importance ranking of engine design 

 It is observed that the rankings of the total effects are 
generally consistent by two methods, except the relative 
importance between x5 and P2. Note that x3, x4, and P1 are not 
important from both the main and the total effects. Therefore, 
we can fix x3 and x4 as constants and P1 at its mean. The model 
for robust design is reduced to searching the values of four 
deterministic design variables (x1, x2, x5, and x6) subject to only 
one random noise parameter, P2. The robust design formulation 
is shown in Figure 8. 
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Figure 8. Robust design formulation for engine design 

 In the above formulation, min_yµ  and min_yσ  are obtained 
by setting the weighting factor at =w 1 and 0, respectively. For 
both the original model and the reduced model, w  is set to be 
0.5. Various starting points are tried for better chance to reach 
the global optimum. When using the original robust design 
model, the optimum solution is f*= 1.0872 with 0580.2=yµ  
and 38.1 −= eyσ . The optimum point is x*=[1.7774 1.0 1.9557 

3.0 1.0317 2.9387]. For the reduced model by fixing x3, x4, and 
P1, the optimum solution is f*= 1.0818 with 1003.2=yµ  and 

50719.5 −= eyσ . The optimum point is x*=[1.7522 1.0726 2.0043 

2.0 2.0 2.9104]. It is noted that using the reduced model, the 
robust design reaches almost the same solution as using the 
original model, but with much smaller variance of the 
objective. The optimum points are different. This example 
shows that the complexity of a robust design problem can be 
reduced with little sacrifice by using the GRPSA method 
proposed in this work for variable screening. 
 
(2)  Reliability-Based Design for the Vehicle 
Crashworthiness of Side Impact 
 We apply the proposed RRPSA methods, Equation 9 and 
11, for probabilistic sensitivity analysis in the post-design stage 
of a reliability-based design for vehicle crashworthiness of side 
impact (Du and Chen, 2004). The design problem has 11 
random variables, among which 9 are design variables and the 
other two are noise factors. The objective is to minimize the 
weight of the structure. Detailed descriptions of the reliability-
based design problem could be found in Du’s dissertation 
(2002). The required reliability is 99.865% for all ten 
probabilistic constraints. At the optimum solution, f*=28.4397 
kg, and there are three active probabilistic constraints: g2, g8, 
and g10, whose limit state functions are shown in Figure 9. For 
the post-design PSA, the goal is to identify variables whose 
variation has the most impact on the reliability. If possible, by 
controlling the uncertainty in those critical variables, larger 
improvement on reliability is expected. The total effects based 
on ( )01 | ppD

iKLx
 and ( )ff

p
KLx ppD f

i
|ˆ  are shown in Table 7. 

Figure 9.  Limit state functions of three active constraints 

 The importance ranking based on total effects in Table 7 is 
shown in Figure 10. The rankings of random variables for three 
active constraints are verified by the improvement of reliability 
of the three through uncertainty reduction in random variables 
(shown in Figure 11-13). 

Table 7. Total effects of random variables on three active  
constraints using RRPSA methods 

Figure 10. Importance ranking of total effects  

Figure 11.  Reliability improvement by variation  
reduction in random variables – g2 
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Figure 12.  Reliability improvement by variation 
reduction in random variables – g8 

Figure 13.  Reliability improvement by variation  
Reduction in random variables – g10 

 
 It is noted from Table 7 that P1 is ranked as either the first 
or the second most important variable for all three probabilistic 
constraints. Its total effects on the reliability for each limit state 
are confirmed in Figures 11 to 13, where different percentages 
of variation reductions are tested. By reducing the same amount 
of uncertainty, P1 will lead to the largest reliability increase 
than any other random variables. The inconsistent ranking from 
Equations 9 and 11 for g8 (as shown in Figure 10) is caused by 
the numerical error of using Equation 11 for assessing RRPSA 
at the extreme tail. It is noticed in Table 7 that the values of 

( )ff
p
KLx ppD f

i
|ˆ  in Equation 11 are quite small for insignificant 

variables such as X1, X3, and X5 in g2. Considering the 
numerical errors introduced in the estimation of PDFs, 

( )ff
p

KLx ppD f

i
|ˆ  may not be a good measure to discern the relative 

importance among those insignificant variables. Such 
sensitivity information is useful when the actual reliability of a 
failure mode does not meet the required level. By reducing a 
partial variation in P1, such as 30%, the reliability of g2 and g10 
would reach a level very close to 1. On the other hand, little 
improvement on reliability will be expected when even totally 
eliminating the uncertainties in those insignificant random 

variables.  For example, when fixing X3 or X8 at their mean 
values, the reliability of g2 can only gain 0.005% improvement. 
 
6.   CONCLUSION 

In this paper, we demonstrate that probabilistic sensitivity 
analysis (PSA) is a useful tool in design under uncertainty by 
providing valuable information about the impact of variables 
on the probabilistic characteristics of a response. Based on the 
range of interest of a design performance (i.e., robust design or 
reliability based design), PSA could be classified into two 
categories: the global response probabilistic sensitivity analysis 
(GRPSA) and the regional response probabilistic sensitivity 
analysis (RRPSA). Existing PSA methods such as the variance-
based methods can only be used for GRPSA.  To overcome this 
difficulty, we propose in this work a modification of Kullback-
Leibler relative entropy based method that can be used for both 
GRPSA and RRPSA.   

Demonstrated by three numerical examples as well as two 
engineering design problems, we show that the proposed 
approach is effective and flexible to be used under various 
design scenarios and at different design stages. By comparing 
our proposed entropy based method with the Sobol’ method for 
GRPSA, we observe that our proposed method provides better 
quantification of the impact of a variable due to the 
incorporation of the PDF of response variable, while the Sobol’ 
method captures only the impact on the response variance 
(second moment). In many cases, the rankings obtained from 
these two methods could be similar, however, for highly 
skewed and heavily-tailed distributions, the rankings will be 
different and our proposed entropy method provides a better 
measure of ranking in such cases.   

Our study also shows that the proposed entropy based 
method can be easily extended for RRPSA. The two alternative 
formulations for RRPSA are both valid, while the formulation 
that treats reliability satisfaction as a discrete event might be 
more sensitive to numerical errors when dealing with very 
small values of failure rate.  To alleviate this problem, 
parametric distribution such as pareto distribution may be 
employed to separately fit the tail distribution. This approach is 
subject to further research. Our examples also demonstrate the 
potential of RRPSA as an effective tool to quantify the impact 
of uncertainty reduction among the variables for reliability 
improvement.   

One limitation of the relative entropy based PSA method is 
that they could only show a ranking of relative importance, but 
the value itself does not have absolute physical meaning. 
Considering the computation demand of PSA, future research 
will be directed towards improving the computational 
efficiency of using the proposed method. 
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