ANALYTICAL VARIANCE-BASED GLOBAL SENSITIVITY ANALYSIS
IN SIMULATION-BASED DESIGN UNDER UNCERTAINTY

Wei Chen*
Integrated DEsign Automation Laboratory (IDEAL)
Northwestern University

Ruichen Jin, Agus Sudjianto
Ford Motor Company

ABSTRACT
The importance of sensitivity analysis in engineering design cannot be over-emphasized. In design under uncertainty, sensitivity analysis is performed with respect to the probabilistic characteristics. Global sensitivity analysis (GSA), in particular, is used to study the impact of variations in input variables on the variation of a model output. One of the most challenging issues for GSA is the intensive computational demand for assessing the impact of probabilistic variations. Existing variance-based GSA methods are developed for general functional relationships but require a large number of samples. In this work, we develop an efficient and accurate approach to GSA that employs analytic formulations derived from metamodels of engineering simulation models. We examine the types of GSA needed for design under uncertainty and derive generalized analytical formulations of GSA based on a variety of metamodels commonly used in engineering applications. The benefits of our proposed techniques are demonstrated and verified through both illustrative mathematical examples and the robust design for improving vehicle handling performance.

Key words: global sensitivity analysis, metamodeling, simulation-based design, uncertainty, analytical formulation, tensor basis product function

1. INTRODUCTION

Sensitivity analysis has been widely used in engineering design to gain more knowledge of complex model behavior and help designers to make informed decisions regarding where to spend the engineering effort. In deterministic design, sensitivity analysis is used to find the rate of change in the model output by varying input variables one at a time near a given central point, which involves partial derivatives and often called local sensitivity analysis. For design under uncertainty, sensitivity analysis has different meanings. The term global sensitivity analysis (GSA) is used because the focus is on studying the impact of variations over the entire range of model inputs—as opposed to local sensitivity using partial derivatives—on the variation of a model output. GSA is performed with respect to the probabilistic characteristics of model inputs and outputs. Details of the potential usage of GSA for both robust design and reliability-based design are provided in Liu et al. (2004). In brief, GSA can be used in a prior-design stage to screen out variables that are probabilistically insignificant and to understand the interactions between design and noise variables, or applied in a post-design stage to determine where the effort should be made to reduce the variability so that the quality of a design can be improved.

Related to the methods for GSA is the concept of analysis of variance (ANOVA) in classical Design of Experiments (DOE) that identifies the factor effects through statistical analysis of computer experiments (Box et al. 1978). Since ANOVA employs the statistical representation of model parameters, the same concept can be used to study the behavior of a model with probabilistic inputs. However, due to the computational complexity, the standard ANOVA often only provides linear effects and second-order interaction effects of variables, but seldom evaluates the nonlinear effect and the total effect (including linear, nonlinear main effects and interaction effects) of an input variable, information that is critical for understanding the true model behavior and ranking variable importance.

To extend the traditional ANOVA to GSA, a number of variance-based methods have been developed, including the Fourier Amplitude Sensitivity Test (FAST) (Saltelli, et al., 1999), correlation ratio (MacKay et al., 1999), various importance measures, Sobol’s total effect indices (Sobol’, 1993), etc. Reviews on different GSA methods can be found in Reedijk (2000), Helton (1993) and Chan et al. (1997). Similar to the concept as used in ANOVA, many of these methods decompose the total variance of an output to items contributed by various sources of input variations, and then
derive sensitivity indices as the ratios of a partial variance contributed by an effect of interest over the total variance of the output. Nevertheless, most of these methods are developed for general functional relationships without consideration that acquiring sample outputs are resource (e.g., computationally) intensive. Therefore, the existing methods require a large number of samples or lengthy numerical procedures such as by employing Monte Carlo (Sobol’, 1993) or lattice samplings (McKay et al., 1999; Saltelli et al., 1999). None of the existing GSA methods are analytical techniques which are expected to be more computationally efficient and accurate. The efficiency is a major barrier of applying GSA for design problems that involve computationally expensive simulations.

We note that in simulation-based design, to facilitate affordable design exploration and optimization, metamodels (“model of model”) are often created based on computer simulations to replace the computationally expensive simulation programs (Chen et al. 1997). While it may be easy to identify the impact of input variations by simply inspecting the regression coefficients of a linear or a quadratic polynomial metamodel, it would be difficult to understand metamodels with sophisticated functional forms, such as radial basis function networks (Hardy, 1971; Dyn, et al., 1986), Kriging (Sacks, et al., 1989; Curran, et al., 1991), etc., let alone when the input variations follow various probabilistic distributions. In this work, we develop an efficient and accurate approach to GSA that employs analytical formulations derived based on the metamodels. The approach is especially applicable to simulation-based design because the information of metamodels is readily available to designers. Similar to many existing variance-based GSA methods, our method uses the concept of ANOVA decomposition for assessing the sensitivity indices. The proposed analytical approach eliminates the need of sampling which could be time-consuming even applied to metamodels. It also improves the accuracy by eliminating the random errors of statistical sampling (note that even a very sophisticated quasi-Monte Carlo sampling has a root mean square error of $O(n^{32+\varepsilon})$, $\varepsilon>0$ where n is the sample size (Owen, 1999)). Based on the needs of GSA in design under uncertainty, we develop generalized analytical formulations that can provide GSA for a variety of metamodels, including those commonly used metamodels such as polynomial, Kriging, the Radial Basis Functions, and MARS (Friedman, 1991). Even though the function forms of these metamodels vary significantly, we show that all these models follow the form of multivariate tensor-product basis functions for which the analytical results of univariate integrals can be constructed to calculate the multivariate integrals in GSA. Our paper is organized as follows. In Section 2, we lay out the mathematical background of GSA. The concepts of ANOVA decomposition and sensitivity indices are introduced. In Section 3, we identify the types of GSA for design under uncertainty and present our analytical approach to GSA. In Section 4, we verify and illustrate the advantages of our proposed techniques by mathematical and engineering examples. Section 5 is the closure of this paper.

2. MATHEMATICAL BACKGROUND OF GSA

In this section, we first introduce the concept of ANOVA decomposition, which is foundational to the evaluation of sensitivity indices (SIs) in variation-based GSA. The SIs are defined next. An example is used to further explain the concept of GSA.

2.1 ANOVA Decomposition

The global sensitivity stands for the global variability of an output over the entire range of the input variables that are of interest and hence provides an overall view on the influence of inputs on an output as opposed to a local view of partial derivatives. With the concept of variance-based GSA, a function is decomposed through functional Analysis of Variance (ANOVA) (Sobol, 1993; Owen, 1992) into increasing order terms, i.e.,

$$f(x) = f_0 + \sum_{i=1}^{M} \phi_i(x_i) + \sum_{i=1}^{M} \sum_{j=i+1}^{M} \phi_{ij}(x_i, x_j) + \ldots + \phi_{12\ldots M}(x_1,\ldots,x_M). \quad (1)$$

Let x_i ($i = 1, 2, \ldots, M$) be independent random variables with probability density functions $p_i(x_i)$, the constant term f_0 is the mean of the $f(x)$:

$$f_0 = \int f(x) \prod_{i=1}^{M} [p_i(x_i) dx_i].$$

A decomposition item depending on a single variable x_i, referred as the main effect, is obtained by averaging out all the variables except x_i and minus the constant item, i.e.,

$$\phi_i(x_i) = \int f(x) \prod_{j \neq i} [p_j(x_j) dx_j] - f_0. \quad (3)$$

A decomposition item depending on two variables, referred as the second-order interaction, is obtained by averaging out all the variables except these two variables and minus their main effects as well as the constant item, i.e.,

$$\phi_{ij}(x_i, x_j) = \int f(x) \prod_{k \neq i, j} [p_k(x_k) dx_k] - \phi_i(x_i) - \phi_j(x_j) - f_0. \quad (4)$$

In general, a decomposition item depending on s variables (referred as s-order interaction) is obtained by averaging out all the variables except the s variables in concern and eliminating the items depending on any subsets of the s variables:

$$\phi_{1\ldots s}(x_1,\ldots,x_s) = \int f(x) \prod_{i \neq j} [p_i(x_i) dx_i] - \sum_{j=1}^{s} \sum_{k=1}^{s-j+1} \phi_{1\ldots j}(x_1,\ldots,x_j) - f_0. \quad (5)$$

where $j_1 < j_2 < \ldots < j_s$.

2.2 Variance Decomposition and Sensitivity Indices

By squaring and integrating Eq.1 and based on the orthogonality feature of the decomposition terms in Eq.1, it can be proved that the variance V of f can be expressed as the summation of the effect variances V_{i-j} of ϕ_{i-j} (s-th-order effect for x_i, \ldots, x_j), i.e.,

$$V = \sum_{i=1}^{M} V_i + \sum_{i=1}^{M} \sum_{j=i+1}^{M} V_{ij} + \ldots + V_{1\ldots M}, \quad (6)$$

where,
\[V = \text{Var}(f(X)) = \int f^2(x)p(x)dx - f_0^2, \quad \text{and} \]
\[V_{i,i} = \text{Var}(d_i(x_1, \ldots, x_i)) = \int d_i^2(x_1, \ldots, x_i) \prod_{j=1}^i p(x_j) dx_j. \]

In Eq.7, \(x \) stands of a vector of variables, the evaluation involves a multidimensional integration of the product of function \(f \) and density functions. With Eq. 6, the output variability of \(f \) (measured by variance) is decomposed into separate portions attributable to each input and interaction. A global sensitivity index is defined as a partial variance contributed by an effect of interest normalized by the total variance \(V \), i.e., the ratio,
\[S_{i,i} = \frac{V_{i,i}}{V}. \]

A sensitivity index \((S_i) \) corresponding to a single variable \((x_i) \) is called main sensitivity index (MSI), and a sensitivity index corresponding to the interaction of two or more variables \((S_{i,i}, s \geq 2) \) is called interaction sensitivity index (ISI). From Eq.6, it can be found easily that all the sensitive indices sum to 1, i.e.,
\[\sum_{i=1}^{M} S_{i,i} = \sum_{i=1}^{M} S_i + \sum_{i<j}^{M} S_{ij} + \cdots + S_{1,2,\ldots, M} = 1. \]

To quantify the total influence of each individual variable induced by both its main effect and interactions with other variables, Homma and Saltelli (1996) proposed the total sensitivity index (TSI) by applying ‘freezing unessential variables’ approach (Sobol, 1993). This is done by partitioning the variables into \(i \) and its complementary set \(x_1 = (x_1, x_{i+1}, \ldots, x_M) \). The total sensitivity index (TSI) for variable \(x_i \) is given by
\[S'_i = S_i + \tilde{S}_{i,i} = 1 - \tilde{S}_{i,i}, \]
where \(\tilde{S}_{i,i} \) is the sum of all the \(S_{j,j} \) that involve the index \(i \) and at least one index from \((1, \ldots, i-1, i+1, \ldots, M) \); \(\tilde{S}_{i,i} \) is the sum of all the \(S_{j,j} \) terms that do not involve the index \(i \). For example, if we have three variables in a model and we wish to measure the total effect of \(x_1 \) on the output variance, then \(S'_i \) is given by:
\[S'_i = S_i + S_{i,2} + S_{1,2} + S_{2,3} = 1-(S_i + S_{1,2} + S_{2,3}). \]

2.3 Example for Understanding GSA

Considering the following second-order polynomial function:
\[f(x) = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_1^2 + \beta_6 x_2 x_3, \]
where \(\beta_1 = \beta_2 = \beta_3 = 1/100 \), \(\beta_4 = 1/10 \), \(\beta_5 = 1 \), and \(\beta_6 = 1 \); each variable is uniformly distributed in [-1 1]. Based on the formulæ in Eqs.1-11, the sensitivity indices are obtained as:
\[S_1 = V_{/V} = 0.4371, \quad S_2 = S_3 = V_{/V} = 1.639e-4, \]
\[S_4 = V_{/V} = 1.639e-2, \quad S_e = V_{/V} = 0.5462. \]

Obviously, the sum of these indices is equal to 1. We note that the MSI (main sensitivity index) of \(x_1 (S_1) \) is influenced by the coefficients of the linear and quadratic coefficients \((\beta_1 \) and \(\beta_5) \) of \(x_1 \); the MSIs of \(x_2, x_3, \) and \(x_4 \) are only related to the coefficients of linear terms because there are no nonlinear or interaction terms of these variables; the ISI (interaction sensitivity index) between \(x_1 \) and \(x_2 (S_{1,2}) \) is influenced by the coefficient \(\beta_{12} \). Furthermore, the TSI (total sensitivity index) corresponding to \(x_1 \) can be obtained by \(S'_1 = S_i + S_{1,2} + S_{1,3} + S_{1,4} = 0.9835 \). Likewise, the TSI corresponding to \(x_2, x_3, \) and \(x_4 \) are 0.5463, 1.639e-4, and 1.639e-4 respectively. Based on the values of TSI, we can rank the variable importance with respect to their impact on the output variability following the sequence of \(x_1, x_2, x_3 (x_4) \). For this example, using MSIs or linear effects alone to rank the importance of variables would be misleading. It should be noted that as the sensitivity indices are (output) variance-based, they may enlarge the difference in significance between two variables. For instance, the ratio of the TSI of \(x_1 \) and \(x_4 \) is close to 60, but it does not mean that \(x_1 \) is 60 times as important as \(x_4 \).

3. DEVELOPMENT OF ANALYTICAL FORMULATIONS OF GSA VIA METAMODELS

The evaluations of sensitivity indices in Eqs.1-11 involve multivariate integrals which are very computationally expensive. Even though advanced sampling approaches have been developed for GSA as introduced in Section 1, they are not practically feasible for problems with time-consuming model evaluations. In this work, we develop an efficient and accurate approach to GSA that employs analytical formulations derived based on the metamodels, which are readily available in simulation-based design. In this section, we first introduce the concept of subset decomposition which will largely simplify the derivation of analytical formulations presented later. We then examine the special needs of GSA for design under uncertainty; the generalized GSA formulations are provided. Next, the concept of tensor product basis function is introduced. Using a polynomial model as an example, we illustrate how the GSA is conducted analytically by transforming a metamodel into the form of tensor product basis function. Due to the space limitation, our focus in this paper is on illustrating the idea and concept behind the proposed method, rather than on the details of derived formulæ for all metamodeling techniques. The detailed formulæ can be found in Jin (2004).

3.1 Subset Decomposition and Subset SIs

With subset decomposition, a variable set is divided into several subsets \(x_{u_1}, \ldots, x_{u_k} \) and the function is decomposed into the effects related to these subsets. Assuming these subsets are statistically independent, then similar to the ANOVA decomposition for individual variables (Eq.1), we have:
\[f(x) = f_0 + \sum \phi_1 (x_{u_1}) + \sum \sum \phi_{u_1 u_2} (x_{u_1}, x_{u_2}) + \cdots + \phi_{u_1 \ldots u_k} (x_{u_1}, \ldots, x_{u_k}) \]

where the symbol \(' \) " means that the decomposition items are related to subsets of variables. The definition of the decomposition item \(\phi_{u_1 \ldots u_k} \) is also similar to that of \(\phi_{i,i} \) related to individual variables (Eq.2), except that subsets of variables \(x_{u_1}, \ldots, x_{u_k} \) are used to replace individual variables \(x_1, \ldots, x_4 \). The variance of \(f(X) \) is now decomposed into the sum of a set of subset variances,
\[V = \sum_{i=1}^{n} \tilde{V}_{i} + \sum_{i<j} \tilde{V}_{i} \tilde{V}_{j} + \ldots + \tilde{V}_{i \ldots n} \quad . \]

(16)

The subset sensitivity indices are defined as the subset variance normalized by the total variance \(V \), i.e.,

\[\tilde{S}_{\upsilon_{i} \ldots \upsilon_{n}} = \tilde{V}_{\upsilon_{i} \ldots \upsilon_{n}} / V \quad . \]

(17)

A sensitivity index corresponding to one subset is called subset main sensitivity index (SMSI) and a sensitivity index corresponding to two or more subsets is called subset interaction sensitivity index (SISI). For instance, assuming there are totally three variables, and we group them into two groups: \(\mathbf{x}_{A} = (x_{1}, x_{2}) \) and \(\mathbf{x}_{B} = (x_{3}) \), then,

\[
\begin{align*}
\tilde{S}_{A} &= \tilde{S}_{1} + \tilde{S}_{2} + \tilde{S}_{12}, \\
\tilde{S}_{B} &= \tilde{S}_{3}, \\
\tilde{S}_{C} &= \tilde{S}_{1} + \tilde{S}_{2} + \tilde{S}_{3}, \\
\tilde{S}_{D} &= \tilde{S}_{1} + \tilde{S}_{3} + \tilde{S}_{23} = 1 - \tilde{S}_{1} - \tilde{S}_{2} - \tilde{S}_{3},
\end{align*}
\]

(18)

Subset decomposition provides a more generic form for ANOVA decomposition. One advantage with subset decomposition is that SISIs can be directly defined via a linear combination of a set of SMSIs. We can prove that the subset interaction effect \(\tilde{\phi}_{\upsilon_{i} \ldots \upsilon_{n}} \) can be expressed as:

\[
\tilde{\phi}_{\upsilon_{i} \ldots \upsilon_{n}}(x_{1}, \ldots, x_{n}) = \sum_{l=1}^{n} \sum_{j=1, j \neq i, (l \neq i)} \left(-1 \right)^{l-j} \tilde{\phi}_{j \ldots l}(x_{1}, \ldots, x_{n}) \quad ,
\]

(19)

where \(^{+} \) means the combination of several subsets into a single subset. Correspondingly, the subset interaction variance \(\tilde{V}_{\upsilon_{i} \ldots \upsilon_{n}} \) and SISIs \(\tilde{S}_{\upsilon_{i} \ldots \upsilon_{n}} \) can be obtained by:

\[
\begin{align*}
\tilde{V}_{\upsilon_{i} \ldots \upsilon_{n}} &= \sum_{l=1}^{n} \sum_{j=1, j \neq i, (l \neq i)} \left(-1 \right)^{l-j} \tilde{V}_{j \ldots l}, \\
\tilde{S}_{\upsilon_{i} \ldots \upsilon_{n}} &= \sum_{l=1}^{n} \sum_{j=1, j \neq i, (l \neq i)} \left(-1 \right)^{l-j} \tilde{S}_{j \ldots l}.
\end{align*}
\]

(20)

(21)

This property of subset decomposition will largely simplify the derivation of analytical formulations as only formulations related to SMSIs need to be derived. It also facilitates the study of the interaction between two groups of variables (e.g., groups of design and noise variables in design under uncertainty). The types of GSA in design under uncertainty are introduced next.

3.2 Types of GSA in Design under Uncertainty

In design under uncertainty, the variability of an output is caused by both the change of design variables and the uncertainty in noise variables. Based on subset decomposition, \(f(x) \) can be expressed as:

\[
f(x) = f_{0} + \hat{\phi}_{A}(x_{D}) + \hat{\phi}_{B}(x_{R}) + \hat{\phi}_{DR}(x) \quad ,
\]

(22)

where \(\hat{\phi}_{A}(x_{D}) \) is the subset main effect of design variables \(x_{D} \), \(\hat{\phi}_{B}(x_{R}) \) is the subset main effect of noise variables \(x_{R} \), and \(\hat{\phi}_{DR}(x) \) is the subset interaction effect between \(x_{D} \) and \(x_{R} \). The total variance of an output is decomposed into

\[V = \tilde{V}_{D} + \tilde{V}_{R} + \tilde{V}_{DR} \quad . \]

(23)

The sensitivity indices obtained by normalizing the items in Eq. 23 allow designers to rank order the importance of design variables as well as noise variables. Studying the interactions between design and noise variables facilitates robust design (Phadke 1989), where the basic idea is to minimize the output uncertainty without eliminating the uncertainty source by adjusting the design variables. Here the sensitivity index \(\tilde{S}_{DR} = \tilde{V}_{DR} / V \) can be used as a measure of the capability of design variables to desensitize the effect of noise variables. Similarly, the capability of a single design variable \(x_{i} \) to dampen the response uncertainty can be measured by a sensitivity index corresponding to the sum of interactions between \(x_{i} \) and all noise variables, defined as the sum of the SISIs involving \(x_{i} \) and at least one noise variable, i.e.,

\[S_{i}^{*} = \tilde{S}_{A} - \tilde{S}_{B \ldots i} = 1 - \tilde{S}_{i} - \tilde{S}_{D} + \tilde{S}_{B \ldots i} \quad ,
\]

(24)

where \(D - i \) stands for an index subset containing all the indices in \(D \) except \(i \).

Besides factor importance, it is also desirable to know the uncertainty elimination of which variable (or a set of variables) will lead to the most significant reduction of uncertainty of performance. Assuming that the uncertainty of a variable with index \(i \in \mathbf{R} \) could be eliminated, then the uncertainty of the response is reduced by the value:

\[\Delta \sigma_{i}^{2} = \text{Var}[f(X)|x_{D}] - \text{Var}[f(X)|x_{D}, x_{i}] \quad .
\]

(25)

If the values of design variables are not yet determined (e.g., in a prior-design stage), an uncertainty reduction measure averaged over the entire range of design variables, called average uncertainty reduction, can be used to evaluate the benefits of eliminating the uncertainty source. The average uncertainty reduction is evaluated by,

\[\overline{\Delta \sigma_{i}^{2}} = V - \tilde{V}_{D} - (V - \tilde{V}_{B \ldots i}) = \tilde{V}_{D} - \tilde{V}_{B \ldots i} = \tilde{V}_{B} + \tilde{V}_{D} \quad .
\]

(26)

Eq.26 shows that the average uncertainty reduction is equal to the sum of the variance of the main effect of the noise variable \(x_{i} \) of interest and the variance of the subset interaction effect between \(x_{i} \) and design variable set \(x_{D} \). Correspondingly sensitivity index for uncertainty reduction, \(S_{i}^{*} \), of variable \(x_{i} \), is defined as:

\[S_{i}^{*} = \overline{\Delta \sigma_{i}^{2}} / V = \tilde{S}_{B \ldots i} - \tilde{S}_{D} = \tilde{S}_{i} + \tilde{S}_{D} \quad .
\]

(27)

3.3 Tensor Product Basis Functions

We find that if a function can be expressed as a tensor-product basis function (c.f., Hastie, et al., 2001), then the analytical results of univariate integrals can be constructed to evaluate the multivariate integrals required for GSA.

A multivariate tensor-product basis functions \(B_{i}(x) \) is defined as a product of \(M \) univariate basis functions \(\hat{h}_{i}(x_{i}) \), i.e.,

\[B_{i}(x) = \prod_{i=1}^{M} \hat{h}_{i}(x_{i}) \quad , i = 1, 2, \ldots, N_{i} \quad .
\]

(28)

For instance \(B(x_{1}, x_{2}) \) can be rewritten as \(B(x_{1}, x_{2}) = \hat{h}_{1}(x_{1}) \hat{h}_{2}(x_{2}) \), where \(\hat{h}_{1}(x_{1}) = x_{1} \) and \(\hat{h}_{2}(x_{2}) = x_{2} \). Note here \(\hat{h}_{1}(x_{1}) \) could be equal to 1 to represent a constant term. Then a special category of functions, called tensor-product basis functions, can be defined as a linear expansion of these multivariate basis functions, i.e.,

\[f(x) = a_{0} + \sum_{i=1}^{N} a_{i} B_{i}(x) = a_{0} + \sum_{i=1}^{N} \left(\sum_{i=1}^{N_{i}} \hat{a}_{i} \hat{h}_{i}(x_{i}) \right) \quad ,
\]

(29)

where \(a_{0} \) (i = 0, 1, ..., \(N_{0} \)) are constant coefficients. Many commonly used metamodels, i.e., polynomial regression model, MARS, RBF (with Gaussian basis functions), Kriging,
can be expressed as tensor-product basis functions, with details shown in Section 3.5.

3.4 Generalized Formulations for GSA

With subset decomposition shown in Section 3.1, all statistical quantities involved in GSA can be evaluated by two most fundamental quantities (Eqs.30-31). We name them as the non-centered subset main effect (or called conditional mean) and the subset main variance, respectively.

\[\hat{f}_x(x_u) = \int f(x) \prod_{j \neq l} [p_j(x_j) dx_j] \, \rightd \]
\[\hat{V}_V = \left[\int \hat{f}_x(x_u) - f_0 \right]^2 \prod_{j \neq l} [p_j(x_j) dx_j] \, \rightd \]
where \(x_u \) are a set of model input variables of interest. The quantity in Eq.30 is named as non-centered subset main effect because the constant item needs to be subtracted to evaluate the subset main effect, in the way similar to Eq.3.

Substituting into Eq.30 the expression of the tensor-product function (Eq.29), we write the non-centered subset main effect for \(x_u \) as follows:

\[\hat{f}_x(x_u) = \left[\sum_{i=1}^{N_l} a_i \prod_{j \neq l} [h_j(x_l)] \right] \prod_{j \neq l} [p_j(x_j) dx_j] \]
\[= a_i \sum_{i=1}^{N_l} \prod_{j \neq l} [h_j(x_j)] \prod_{j \neq l} [p_j(x_j) dx_j] \]
\[= a_i \sum_{i=1}^{N_l} \prod_{j \neq l} [C_{i,j} h_j(x_j)] \]
where \(C_{i,j} \) is the mean of the univariate basis function \(h_j(x_j) \), i.e., \(C_{i,j} = \int h_j(x_j) \, p_j(x_j) \, dx_j \).

The function mean \(f_0 \) can be directly obtained by using an empty subset \(x_u \) (i.e., \(\Phi = \emptyset \)),

\[f_0 = a_0 \sum_{i=1}^{N_l} \prod_{j \neq l} [C_{i,j}] \]

Substituting into Eq.31 the expressions of \(f_0 \) (Eq.28) and the tensor-product function (Eq.34), we write the subset main variance for \(x_u \) as follows:

\[\hat{V}_V = \left[\sum_{i=1}^{N_l} \prod_{j \neq l} [C_{i,j}] h_j(x_l) \right] - \left[\sum_{i=1}^{N_l} \prod_{j \neq l} [C_{i,j}] \right] \prod_{j \neq l} [p_j(x_j) dx_j] \]
\[= \left[\sum_{i=1}^{N_l} \prod_{j \neq l} [C_{i,j}] h_j(x_l) \right] \prod_{j \neq l} [p_j(x_j) dx_j] - \prod_{j \neq l} [p_j(x_j) dx_j] \]
\[= \sum_{i=1}^{N_l} \prod_{j \neq l} [C_{i,j}] \]
\[= \sum_{i=1}^{N_l} \prod_{j \neq l} [C_{i,j}] \]
where, \(C_{2,i,j,l} \) is the inner product of two univariate basis functions \(h_j(x_j) \) and \(h_i(x_j) \), i.e., \(C_{2,i,j,l} = \int h_j(x_j) h_l(x_j) \, p_l(x_l) \, dx_l \).

With \(x_u = x \), we can directly obtain the variance of \(f(x) \):

\[V = \sum_{i=1}^{N_l} \sum_{l=1}^{M} a_i a_l \prod_{j \neq l} [C_{i,j} C_{j,l}] \prod_{j \neq l} [C_{2,i,j,l}] \]

It can be observed that the above formulations (Eqs.32-26) depends on two common sets of quantities defined by univariate integrals, i.e., the mean of univariate basis function \(C_1 \) and the inner product of two univariate basis functions \(C_2 \). Once the forms of the basis functions and the distributions of the variables are fixed, the values of \(C_1 \) and \(C_2 \) are also fixed and can be used to evaluate all sensitivity indices for GSA.

3.5 Analytical GSA Formulations via Metamodels

Using the polynomial model as an example, we illustrate in this section how to further expand the generalized analytical formulations in Section 3.4 for commonly used metamodels that follow the form of tensor-product basis functions. Derivations for Kriging models, Gaussian radial basis function model, and MARS model can be found in Jin 2004.

All polynomial regression models can be transformed into the tensor product form. Consider the most widely used second-order regression model,

\[f(x) = \beta_0 + \sum_{i=1}^{M} \sum_{l=1}^{M} \beta_{il} x_{il} + \sum_{i=1}^{M} \sum_{l=1}^{M} \beta_{i} x_{i} x_{l} \]

For any \(0 \leq i \leq M \) and \(j \neq 0 \), we define multivariate basis functions as

\[B_{i,j} = \begin{cases} x_i & i = j \\ 0 & i < j \\
\end{cases} \]

The univariate basis functions corresponding to variable \(x_i \) are:

\[B_{i,i} = \begin{cases} 1 & \text{none of } (i,j) = l \\ x_i & \text{only one of } (i,j) = l \\ x_i^2 & \text{both of } (i,j) = l \\
\end{cases} \]

The polynomial model can be re-written as:

\[f(x) = \beta_0 + \sum_{0 \leq i,j = 0}^{M} \beta_{ij} B_{i,j} \]

where \(\beta_{ij} = \beta_j \).

The subset main effects/variances and the response mean/variance for a second polynomial regression model can be directly evaluated. The values of \(C_1 \) and \(C_2 \) are evaluated by, respectively:

\[C_{1,i,j,l} = \begin{cases} 1 & \text{none of } (i,j) = l \\ x_i p_i(x) dx_i = \mu_i & \text{only one of } (i,j) = l \\ x_i^2 p_i(x) dx_i = \mu_i^2 + \sigma_i^2 & \text{both of } (i,j) = l \\
\end{cases} \]

\[C_{2,i,j,l} = \begin{cases} 1 & \text{none of } (i,j) = l \\ x_i p_i(x) dx_i = \mu_i & \text{only one of } (i,j) = l \\ x_i^2 p_i(x) dx_i = \mu_i^2 + 3 \mu_i \sigma_i^2 + \sigma_i^4 & \text{both of } (i,j) = l \\ x_i^3 p_i(x) dx_i = \mu_i + 3 \mu_i \sigma_i^2 + 3 \mu_i \sigma_i^2 + \sigma_i^4 & \text{all of } (i,j) = l \\
\end{cases} \]

Here, \(\mu_i \) and \(\sigma_i^2 \) are the mean and variance of input variable \(x_i \), \(\mu_i^3 \) (n = 3, 4) is the \(n^{\text{th}} \) centered moment of \(x_i \), i.e., \(\mu_i^3 = \int (x_i - \mu_i)^3 p_i(x) dx_i \). The values of \(\mu_i, \sigma_i^2, \mu_i^2 \), and \(\mu_i^4 \) depend on the type of input distributions. For uniform
distributions, we have \(\sigma_i^3 = \delta_i^3 / 3 \cdot \mu_{i,3} = 0 \cdot \mu_{i,4} = \delta_i^4 / 5 \); for normal distributions, we have \(\mu_{i,3} = 0 \cdot \mu_{i,4} = 3 \sigma_i^3 \).

Furthermore, noting that many \(C_1 \) and \(C_2 \) are equal to 1, we can obtain the non-centered subset main effect (Eq.30) and subset main variance (Eq.31) for GSA via the tensor product based polynomial function in Eq.40:

\[
\hat{f}_c(x_c) = \beta + \sum_{i=1}^N \sum_{j=1}^n \beta_i x_i + \sum_{i=1}^N \sum_{j=1}^n \beta_j x_j + \sum_{i=1}^N \beta_i x_i + \sum_{j=1}^n \beta_j x_j, \tag{43}
\]

\[
\hat{V}_c = \sum_{i=1}^N \beta_i^2 (\mu_{i,-2} - \sigma_i^2) + (\beta + \mu_i + \sum_{j=1}^n \beta_j \mu_j)^2 \sigma_i^2 + \mu_i + \sum_{j=1}^n \beta_j \mu_j \mu_{i,j,1},
\]

\[
+ \sum_{i=1}^N \sum_{j=1}^n \beta_j^2 \sigma_i^2 \sigma_j^2,
\]

where \(\beta_i \) if \(i > j \).

Similarly, a Kriging model can be transformed into a tensor-product function:

\[
f(x) = \beta + \sum_{i=1}^N \sum_{j=1}^n \beta_i \varphi_i (x), \tag{45}
\]

Many different one-dimensional correlation functions could be used (see, e.g., Currin, et. al., 1991; Sacks, et. al., 1989). In practice, The Gaussian correlation function,

\[
\hat{h}_i(x_i) = \exp \left[- \theta_i (x_i - x_i)^2 \right]
\]

has become the most popular choice.

The Gaussian Radial Basis Function model can be written as,

\[
\hat{y}(x) = \beta + \sum_{i=1}^N \sum_{j=1}^n \beta_i \varphi_i (x), \tag{46}
\]

where, \(\varphi_i (x) = \exp \left[- \frac{1}{2 \tau_i^2} \sum_{j=1}^n (x_i - t_{i,j})^2 \right] = \prod_{j=1}^n \exp \left[- \frac{(x_i - t_{i,j})^2}{2 \tau_i^2} \right] \). If we define

\[
h_i(x_i) = \exp \left[- \frac{(x_i - t_{i,j})^2}{2 \tau_i^2} \right],
\]

then the RBF model is transformed into a tensor-product basis function:

\[
f(x) = \beta + \sum_{i=1}^N \sum_{j=1}^n \beta_i \varphi_i (x).
\]

Noting that the form of Gaussian RBF model is similar to that of Kriging model, except that the width \(\tau_i \) is associated with each basis function instead of to each variable.

A MARS model is a weighted sum of tensor spline basis functions, i.e.,

\[
f(x) = a_0 + \sum_{i=1}^N a_i B_i(x), \tag{48}
\]

where the tensor spline basis functions are defined as tensor products of univariate truncated power functions:

\[
B_i(x) = \prod_{\ell=1}^n [x_{i,\ell}(x_{i,\ell} - t_{i,\ell})], \tag{49}
\]

Define a set of univariate basis functions:

\[
h_i(x_i) = \left\{ \begin{array}{ll} 1 & \ell \in K_i, \\ [x_{i,\ell}(x_{i,\ell} - t_{i,\ell})] & \ell \in K_i, \end{array} \right.
\]

then MARS model is written in a tensor-product function as follows:

\[
f(x) = a_0 + \sum_{i=1}^N \sum_{j=1}^n h_i(x_i).
\]

The analytical derivations of Eqs. 30-31 for Kriging model, RBF, and MARS are omitted here.

4. VERIFICATION AND ENGINEERING EXAMPLES

4.1 Verification Example

We consider here a four-variate function,

\[
f(x) = 1 + \exp\{-[2(x_1 - 0.5)^2 + x_2^2] - 0.5(x_2^2 + x_3^2)\} + \exp\{-[2x_1^2 + (x_1 - 0.5)^2] - 0.5(x_1^2 + x_4^2)\}
\]

where \(0 \leq x_1, x_2, x_3, x_4 \leq 1 \), \(x_i \) follows the uniform distribution.

This function has the form of a Kriging model, in which the correlation coefficients \(\theta_1 \) and \(\theta_2 \) are equal to 2 and the correlation coefficients \(\theta_1 \) and \(\theta_2 \) are equal to 0.5. Due to the symmetric feature in this function, \(x_1 \) and \(x_2 \), \(x_3 \) and \(x_4 \) should have the same influence on \(f(x) \), respectively.

Based on the analytical formulations derived for Kriging, we obtain all the main/interaction effects. The main effects and second-order interactions are graphically shown in Figures 1 and 2, respectively. In the following, \('x_1(x_2) \) means \(x_1 \) and \(x_2 \) are mutually replaceable since the effects are the same; the same with \('x_3(x_4) \). From the figures, it is observed that the main effect of \(x_1(x_2) \) is much larger than that of \(x_1(x_2) \); the interaction between \(x_1 \) and \(x_2 \), however, is much larger than that between \(x_1(x_2) \) and \(x_3(x_4) \) and that between \(x_1(x_2) \) and \(x_3(x_4) \). The nonlinearity of the effects is also clearly demonstrated. Interactions do exist due to the exponential function form in Eq.52.

Table 1 shows pairs of MSI and TSI (\(S_i, S'_i \)) corresponding to each variable, which are evaluated by the following relationships between sensitivity indices and subset main indices:

\[
S_i = S'_i, \tag{52}
\]

\[
S'_i = 1 - S_i. \tag{53}
\]

![Figure 1. Main Effects of Illustrative Example](image1)

![Figure 2. Interaction Effects between Two Variables](image2)

Results from our proposed analytical method and using Monte Carlo samples are both included for the purpose of comparison. From the analytical results, it is observed that the
MSI for \(x_1(x_2)\) are very small while TSI for \(x_1(x_2)\) are very large due to large interactions that exist between \(x_1(x_2)\) and other variables; on the other hand, the TSI and MSI for \(x_1(x_4)\) are close, which indicates that the interactions involving \(x_1(x_4)\) are relatively small. These observations are consistent with what we learned from Figures 1 and 2.

Different sizes of Monte Carlo random samples are tested and compared to the analytical results. We observe that for this particular function tested, Monte Carlo method is inaccurate with relatively small sample size (i.e., 1000). With a large sample size (100,000), the results from Monte Carlo improve; however, due to estimation errors, some of the results from the sampling method are still not accurate. For example, results from all sampling tests show that TSI for \(x_4\) is smaller than MSI, which is impossible as TSI should always be larger than or equal to MSI. We conclude from this verification example that our proposed analytical method can avoid random errors associated with sampling methods. The results from our method are expected to be the most accurate since they are analytically derived.

Table 1: Main/Total Sensitivity Indices from Analytical Method and Monte Carlo Method

<table>
<thead>
<tr>
<th>Method</th>
<th>(S_1^r)</th>
<th>(S_2^r)</th>
<th>(S_1^t)</th>
<th>(S_2^t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Method</td>
<td>(0.0033, 0.5798)</td>
<td>(0.0033, 0.5798)</td>
<td>(0.2063, 0.2220)</td>
<td>(0.2063, 0.2220)</td>
</tr>
<tr>
<td>MCS Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^5</td>
<td>(0.0208, 0.5820)</td>
<td>(0.0089, 0.5838)</td>
<td>(0.2126, 0.2235)</td>
<td>(0.2326, 0.2216)</td>
</tr>
<tr>
<td>10^4</td>
<td>(0.0787, 0.5809)</td>
<td>(0.0518, 0.5835)</td>
<td>(0.2115, 0.2245)</td>
<td>(0.2845, 0.2232)</td>
</tr>
<tr>
<td>10^3</td>
<td>(0.245, 0.6119)</td>
<td>(0.3761, 0.6167)</td>
<td>(0.4844, 0.2225)</td>
<td>(0.2814, 0.2467)</td>
</tr>
</tbody>
</table>

Table 2: Sensitivity Indices for Design Under Uncertainty

<table>
<thead>
<tr>
<th>Indices for robust design (design-noise interaction)</th>
<th>Indices for uncertainty reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1^r)</td>
<td>(S_3^r)</td>
</tr>
<tr>
<td>0.5764</td>
<td>0.0156</td>
</tr>
</tbody>
</table>

As discussed in Section 3.2, the information offered by GSA can be used for various aspects to guide design under uncertainty. In the context of robust design, a sensitivity index \(S_u^r\) can be used to measure the capability of a set of design variables \(x_u\) to desensitize the effect of noise variables on the output uncertainty; on the other hand, a sensitivity index \(S_u^s\) can be used to measure the impact of eliminating all noise variable(s) \(x_u\) to reduce the output uncertainty. All sensitivity indices for design under uncertainty can be obtained based on SSMIs. For instance, the sensitivity index \(S_1^r\) can be calculated by: \(S_1^r = 1 - S_{(2,4)}^r - S_{(3,3)}^r + S_1^s\). The values of the sensitivity indices are shown in Table 2. Since the interaction between the subsets of design and noise variables is significant, i.e., \(S_{(2,4)}^r = 0.5806\), it means that adjusting the design variables could considerably desensitize the effect of noise variables for this model. In particular, the capability of the design variable \(x_1\) to dampen output uncertainty could be considerable since \(S_1^r\) is large. From the values of \(S_1^r\) and \(S_4^u\) in the table, it is observed that reducing the uncertainty source in the noise variable \(x_3\) will have a larger impact than reducing that in the noise variable \(x_4\).

4.2 Vehicle Handling Problem

Rollover of ground vehicles is one of the major causes of highway accidents in the United States (Mohemedshah and Council, 1997). To prevent vehicle rollover, we developed a robust design procedure (Chen, et al., 2001) to optimize vehicle and suspension parameters so that the design is not only optimal against the worst maneuver condition but is also robust with respect to a range of maneuver inputs. In our earlier work, the second-order polynomial function was created as the response surface model; factor importance was examined by checking the coefficients of the second-order polynomial function and screened based on the linear effects. In this work, our proposed analytical techniques for GSA are applied to the same problem. Through comparisons, we illustrate the advantages of our newly developed methods.

Problem Definition

The detailed description of the simulation program for studying the rollover behavior and the robust design formulation for preventing rollover can be found in (Chen, et al., 2001). In brief, the rollover simulation is the integrated computer tool ArcSim (Sayers and Riley, 1996) developed at the University of Michigan for simulating and analyzing the dynamic behavior of 6-axle tractor/semi-trailers. Without building the metamodel, the testing of an optimization scenario without robustness consideration takes at least five hours to converge (Michelena and Kim, 1998) on the Sun Ultra-1 workstation. When robustness considerations are introduced, the computational demand becomes more significant.

Fourteen ArcSim input parameters corresponding to suspension and vehicle parameters are chosen as design variables (control factors) (see Table 3). The steering and braking parameters are taken as the noise factors to capture the range of maneuvering conditions (see Table 4). The level of braking (brake_level) is the amount of braking pressure applied. The level of steering (steer_level) is the angle the steering wheel is turned. The starting and ending times of braking defines when the driver starts and stops braking. The ending times of steering defines when the driver stops steering. A rollover metric \(R\) is used as the response for which the metamodel is created. The rollover metric is defined as the square root of the integral of the square of the rollover angle over time trajectory (see Table 4). Without robustness consideration takes at least five hours to converge (Michelena and Kim, 1998) on the Sun Ultra-1 workstation. When robustness considerations are introduced, the computational demand becomes more significant.

Development of the Kriging Metamodel and GSA

To reduce the problem size, screening experiments are first performed to identify the critical variables. A 200×19 (200 runs for 19 variables) optimal LHD (Jin et al., 2003) is generated for the screening experiments. A kriging metamodel of rollover metric is created over all the design variables and noise variables. When implementing the GSA, uniform distributions are used for all design variables over the whole
design range defined by lower and upper bounds; distributions defined in Table 4 are taken as the input for noise variables.

Table 3. Design Variables and Their Ranges

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH1</td>
<td>Height of hitch above ground</td>
<td>51.20</td>
<td>76.80</td>
<td>in</td>
</tr>
<tr>
<td>KHX1</td>
<td>Hitch roll torsional stiffness</td>
<td>80000</td>
<td>120000</td>
<td>in-lb/deg</td>
</tr>
<tr>
<td>KT11</td>
<td>Axle 1 tire stiffness</td>
<td>5520.00</td>
<td>8280.00</td>
<td>lb/in</td>
</tr>
<tr>
<td>KT123</td>
<td>Axles 2 & 3 tire stiffness</td>
<td>5520.00</td>
<td>8280.00</td>
<td>lb/in</td>
</tr>
<tr>
<td>KT2123</td>
<td>Axles 4, 5, & 6 tire stiffness</td>
<td>4139.20</td>
<td>6208.80</td>
<td>lb/in</td>
</tr>
<tr>
<td>LTS11</td>
<td>Distance between springs on Axle 1</td>
<td>30.40</td>
<td>45.60</td>
<td>in</td>
</tr>
<tr>
<td>LTS123</td>
<td>Distance between springs on Axles 2 & 3</td>
<td>30.40</td>
<td>45.60</td>
<td>in</td>
</tr>
<tr>
<td>LTS2123</td>
<td>Distance between springs on Axles 4 & 5 & 6</td>
<td>30.40</td>
<td>45.60</td>
<td>in</td>
</tr>
<tr>
<td>M11</td>
<td>Laden load for Axle 1</td>
<td>11540</td>
<td>17310</td>
<td>lbm</td>
</tr>
<tr>
<td>M123</td>
<td>Laden load for Axles 2 & 3</td>
<td>20358.40</td>
<td>30357.60</td>
<td>lbm</td>
</tr>
<tr>
<td>M2123</td>
<td>Laden load for Axle 4, 5 & 6</td>
<td>16274.40</td>
<td>24411.60</td>
<td>lbm</td>
</tr>
<tr>
<td>SCFS11</td>
<td>Axle 1 spring stiffness scale factor</td>
<td>0.8</td>
<td>1.2</td>
<td>/</td>
</tr>
<tr>
<td>SCFS123</td>
<td>Axle 2 & 3 spring stiffness scale factor</td>
<td>0.8</td>
<td>1.2</td>
<td>/</td>
</tr>
<tr>
<td>SCFS2123</td>
<td>Axle 4.5 & 6 spring stiffness scale factor</td>
<td>0.8</td>
<td>1.2</td>
<td>/</td>
</tr>
</tbody>
</table>

Table 4. Noise Variables and Their Ranges

<table>
<thead>
<tr>
<th>Variable</th>
<th>Distribution</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>brake_level</td>
<td>Uniform</td>
<td>70</td>
<td>120</td>
<td>psi</td>
</tr>
<tr>
<td>start_brake</td>
<td>Uniform</td>
<td>1.02</td>
<td>1.38</td>
<td>sec</td>
</tr>
<tr>
<td>end_brake</td>
<td>Uniform</td>
<td>1.53</td>
<td>2.07</td>
<td>sec</td>
</tr>
<tr>
<td>steer_level</td>
<td>Uniform</td>
<td>60</td>
<td>100</td>
<td>deg</td>
</tr>
<tr>
<td>end_steer</td>
<td>Uniform</td>
<td>2.16</td>
<td>3.24</td>
<td>sec</td>
</tr>
</tbody>
</table>

As shown in Fig. 3, the total sensitivity index (TSI), which takes into account not only the contribution of main effects of a variable but also the contribution of interactions between variables, is used for ranking the importance of different variables. From Fig. 3, it is evident that the eight design variables listed as ‘Rest’ as a whole contribute merely 0.001% of the variability in the metamodel in terms of subset TSI ($S'_{rot} \approx 1.0e-5$). In addition, the interactions between these eight design variables and the noise variables are also negligible ($S'_{rot} \approx 1.6e-6$).

Based on these observations, it is decided to use the 11 relatively important variables in subsequent procedures and freeze the eight relatively unimportant variables at their nominal values. It is also found that three noise variables, i.e., brake_level, end_brake, and steer_level play very significant roles in the variability of the response. Table 5 shows the importance ranking of the top 11 variables in terms of TSI and the sensitivity indices of main effects (MSI). It is noted that for this problem, the two rankings are not the same. For instance, MSI of M123 is negligible, while its TSI is considerably large. In our earlier study (Chen et al. 2001), ANOVA based study of main effects was used to reduce the size of the problem, where M123 is considered as unimportant. We believe that the TSI better reflects the whole contribution of a variable to a response and should be used in screening.

Table 5. Importance Ranking of the Variables

<table>
<thead>
<tr>
<th>Importance Ranking</th>
<th>TSI</th>
<th>MSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>brake_level</td>
<td>steer_level</td>
</tr>
<tr>
<td>2</td>
<td>brake_end</td>
<td>brake_level</td>
</tr>
<tr>
<td>3</td>
<td>steer_level</td>
<td>brake_end</td>
</tr>
<tr>
<td>4</td>
<td>M123</td>
<td>LTS123</td>
</tr>
<tr>
<td>5</td>
<td>LTS123</td>
<td>brake_start</td>
</tr>
<tr>
<td>6</td>
<td>M2123</td>
<td>M2123</td>
</tr>
<tr>
<td>7</td>
<td>steer_end</td>
<td>steer_end</td>
</tr>
<tr>
<td>8</td>
<td>brake_start</td>
<td>HH1</td>
</tr>
<tr>
<td>9</td>
<td>HH1</td>
<td>M11</td>
</tr>
<tr>
<td>10</td>
<td>M11</td>
<td>LTS2123</td>
</tr>
<tr>
<td>11</td>
<td>LTS2123</td>
<td>M123</td>
</tr>
</tbody>
</table>

With the knowledge of variable importance, an additional 400 sample runs are applied in a sequential manner to build the Kriging model for the reduced set of 11 variables. The R-square value of the metamodel is at around 0.8 after confirmation. Previous experience has shown that this problem is very nonlinear and it is difficult to obtain a metamodel with a very high accuracy (Chen et al., 2001; Jin et al. 2001).

The Kriging model obtained for the reduced set of 11 variables is used to refine the ranking of variable importance and to interpret the response behavior. Fig. 4 illustrates the contribution (to the variability of rollover metric) of the subset main effect of noise variables, the subset main effect of design variables, and the subset interaction between the two groups. It is found that the subset interactions are not negligible, which is a desired feature in robust design. Table 6 shows the sensitivity indices S'_{i} for all the interactions between one design variable and all noise variables. From the table, we observe that the capability of M123 to dampen the output uncertainty is larger than other design variables. This further confirms the importance of keeping variable M123 in robust design.
From the focus of this study is on global sensitivity analysis, the robust design formulation and results for preventing vehicle rollover under a range of maneuver conditions are not presented here. Readers interested in the robust design formulation and solution should consult (Chen et al. 2004). It is found that the robust design achieved using this new approach is far better than the results obtained in our earlier work (Chen et al. 2001). Besides the reason that the Kriging model created based on space-filling sample points in this study is much more accurate than the quadratic response surface model created based on ad hoc sampling approach in the earlier work, the use of the proposed GSA method has helped to provide more accurate assessments while reducing the problem size. The GSA method used in this work has identified M123 as a critical variable through the total sensitivity index. Chen et al.'s earlier study, however, failed to identify M123 as an important variable because a quadratic response model was created for the screening purpose, and only the linear main effects were used in ranking variable importance due to the limitation of the classical ANOVA analysis.

5. CLOSURE

The fundamental contribution of this work is the development of analytical techniques for assessing the global sensitivity and performance distribution characteristics via the use of metamodels in simulation-based design under uncertainty. We discover that the commonly used metamodels such as polynomial, Kriging, the Radial Basis Functions, and MARS all follow the form of multivariate tensor-product basis functions for which the analytical results of univariate integrals can be combined to evaluate the multivariate integrals in GSA (global sensitivity analysis).

Our other contribution is the introduction of variable subset decomposition in GSA which transforms the evaluations of subset interaction sensitivity indices into a combination of subset main sensitivity indices. In particular, the decomposition of control and noise variable sets provides a powerful tool to facilitate insightful construction of robust design. We identify the needs of GSA in design under uncertainty and further derive the generalized analytical formulations as well as the metamodel specific analytical formulations.

Using both mathematical examples and an engineering problem, we demonstrate that compared to the existing sampling-based approaches to variance-based GSA, our approach provides more accurate as well as more efficient GSA results. The techniques are especially useful for design applications that require computationally expensive simulations. The knowledge obtained though global sensitivity analysis offers insights into the model behavior, provides guidance in reducing the problem size, and helps to identify sources for variance reduction. Overall, they help designers to make informed decisions in product design with the consideration of uncertainty, a step beyond traditional sensitivity analysis in deterministic design.

As a part of our research effort, the same idea presented in this paper has been used for deriving analytical formulations for uncertainty propagation, in particular, the assessments of mean and variance of a model output in robust design (Chen et al. 2004). Results show that the use of the analytical approach significantly reduces the random errors associated with the sampling approach and greatly facilitates the convergence of optimization for robust design. Future work
in this area will involve the consideration of the dependence of the variability of input variables and alternative GSA measures that evaluate the impact of variables not only by the influence on the variance but also on the whole probabilistic distribution of a model output.

ACKNOWLEDGEMENT

The support from Ford URP (University Research Program) and NSF grant DMI0335877 is greatly acknowledged. We are grateful for the Arcsim program provided by the Automotive Research Center (ARC) at University of Michigan.

REFERENCES

