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A DESIGN-DRIVEN VALIDATION APPROACH USING BAYESIAN 
PREDICTION MODELS  

 

 
ABSTRACT 

In most of the existing work, model validation is viewed as verifying the model 

accuracy, measured by the agreement between computational and experimental results.   

Due to the lack of resource, accuracy can only be assessed at very limited test points. 

However, from the design perspective, a good model should be considered the one that 

can provide the discrimination (with good resolution) between competing design 

candidates under uncertainty.  In this work, a design-driven validation approach is 

presented.  By combining data from both physical experiments and the computer model, 

a Bayesian approach is employed to develop a prediction model as the replacement of the 

original computer model for the purpose of design. Based on the uncertainty 

quantification with the Bayesian prediction and subsequently that of a design objective, 

some decision validation metrics are further developed to assess the confidence of using 

the Bayesian prediction model in making a specific design choice.  We demonstrate that 

the Bayesian approach provides a flexible framework for drawing inferences for 

predictions in the intended, but maybe untested, design domain.  The applicability of the 

proposed decision validation metrics is examined for designs with either a discrete or 

continuous set of design alternatives.  The approach is demonstrated through an 

illustrative example of robust engine piston design. 
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NOMENCLATURE 

( )eY x   physical experimental observation 
( )ε x   experimental error  
( )rY x  true response outcome  
( )mY x  outcome of computer model 

( )δ x  the bias (or error) of computer model  
( )f x  design objective function 
( )Z x  difference between ( )f x  and  ( *)f x  

x  1( )T
px x= , ,x " , design in a p-dimensional space 

eD  1{ }
ee nD = , ,x x" , for physical experiments 

mD  1{ }
mnmD = , ,′ ′x x" , for computer experiments 

mn , en  size of mD  / eD , the number of computer / physical experiments 
2
εσ  variance parameter of ( )ε x  
2
δσ  variance parameter of the prior Gaussian process ( )δ x  

δφ  correlation parameter of the prior Gaussian process ( )δ x  
τ  ratio of 2

εσ  to 2
δσ  

e mnδ | ,  degree of freedom of t distribution 
( )e mδµ | , x  noncentrality parameter of t distribution 

2 ( )e mδσ | , x  scale parameter of t distribution 
( *)DM x  decision validation metric 

H  design tolerance 
0X  indifferentiable region 
dΩ  set of feasible design alternatives 

K   number of design candidates or competing designs 

1.  INTRODUCTION 

With rapid increase of computational power, modeling or simulation based design has 

been increasingly used for designing new engineering systems.  However, it remains a 

challenge on assessing the risks and uncertainties associated with the use of computer 

models in engineering design.  Even though there is growing interest from both 

government and industries in developing fundamental concepts and terminology for 

model validation (DoD; Ang et al. 1996, Doebling, et al. 2002; Oberkampf et al, 2003; 

Cafeo and Thacker 2004; Gu and Yang, 2003), model validity and model validation are 

poorly understood in engineering design.  Most of the existing model validation work 

(e.g., Marczyk et al. 1997; Freese, 1960; Reynolds, 1984; Gregoire and Reynolds, 1988; 
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Hills and Trucano 1999), is rooted in computational science where validation is viewed 

as verifying the model accuracy, i.e., a measure of the agreement between computational 

and experimental results. An extensive discussion of validation literature in 

computational mechanics can be found in Oberkampf and Trucano (2000).  In most of the 

existing work, model validation has been primarily carried out from the perspective of 

model builders (or analysts) but not from that of designers (model users).  Validation 

metrics are assessed based on very limited test points without considering the predictive 

capability at untested but potential design space and the various sources of uncertainties. 

In summary, the existing approaches for validating analysis models are not directly 

applicable for assessing the confidence of using predictive models in engineering design. 

In the engineering design research community, special attentions have been given to 

how models and information are used in design decision making (McAdams and Dym, 

2004).  Preliminary efforts have been made on characterizing and assessing the validity 

of behavior models and their predictions in design (Malak and Paredis, 2004).  Hazelrigg 

(2003) brought up the notion that validation of a predictive model can be accomplished 

only in the context of a specific decision, and only in the context of subjective input from 

a decision maker, including preferences.   As noted by Hazelrigg (2003), what really 

matters to designers is whether a model generates design choices whose real outcomes 

are better than other design choices.  To make such an assessment, as illustrated in Fig. 1, 

in the presence of model uncertainty, it is important to assess the probability ijP  of design 

alternative xi to produce an outcome that is preferred to or indifferent to another 

alternative xj, i.e., P[ ( ) ( )]ij i jP f f= <x x assuming the smaller-the-better scenario. It 

should be pointed out that design alternatives are compared against each other with 

regard to a specific design objective ( )f x , which is a function of single or multiple 

responses y(x) from computer model(s). To quantify the uncertainty of ( )f x , statistical 

inference techniques must be developed to first quantify the uncertainty associated with 

the prediction of the response y(x) based on the results from both models and physical 

experiments.   
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Figure 1. Design resolution  

Recent approaches for quantitatively comparing computations and experiments to 

derive the probability distributions of model predictions can be divided into two 

categories, namely classical frequentist approach (Oberkampf and Barone, 2004) and 

Bayesian approach (Kennedy and O’Hagan, 2001; Bayarri et al., 2002; Buslik, 1994; 

Hanson, 1999).  Easterling and Berger (2002) provided an extensive review on classical 

statistical approaches for model validation and a simple case study.  A review of 

Bayesian approaches can be found in Bayarri et al. (2002).  The fundamental difference 

between the frequentist and the Bayesian approach is that the former draws confidence 

intervals of prediction based on statistical data analysis, while the latter assumes that the 

model parameters themselves are random and follow a prior distribution, specified based 

on model builder/designers’ prior knowledge.  The prior distribution will be updated once 

experimental data is available and becomes posterior distribution.  The Bayesian 

approach is preferred to the classical statistical approach when it is too expensive to 

obtain a statistically sufficient amount of data, which is often the case in engineering 

design. 

Existing model validation metrics are mostly associated with the measures of model 

accuracy based on limited tested points.  Many of existing approaches cannot provide 

stochastic measurements with regard to the confidence in using a model.  For instance, 

graphical comparisons through visual inspection of x-y plots, scatter plots and contour 

plots are often subjective and not sufficient (Oberkampf and Trucano, 2000). Quantitative 

comparisons (Marczyk et al. 1997) that rely on the measures of correlation coefficient 

and other weighted and non-weighted norms to quantify the distance between the two 

“clouds” cannot provide statistical judgment of model validity.  Various statistical 

inference techniques, such as χ2 (Chi-square) test on residuals between model and 

( )if x

Probability density 

( )jf x

Design objective
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experimental results (Freese, 1960; Reynolds, 1984; Gregoire and Reynolds, 1988) 

require multiple evaluations of the model and experiments, and many statistical 

assumptions that are difficult to satisfy.   

Although the need for validating models from the perspective of engineering design 

has been brought up (Malak and Paredis, 2004; Hazelrigg 2003), few have developed 

quantitative means to define and to assess model validity in such context. In the author’s 

earlier work, an approach was developed to provide stochastic assessment of the validity 

of a model (Chen et al. 2004; Buranathiti et al. 2004).  However, the approach is more 

useful for rejecting (invalidating) a model rather than accepting (validating) a model.  In 

the recent work of Mahadevan and Rebba (2005), a Bayes network approach is proposed 

for validating the reliability assessment made by computational models.  Validation was 

treated as a hypothesis testing problem.  However, the emphasis was on validating the 

modeling accuracy at tested design points, but not in the context of a new design.  

In this paper, we present a design-driven validation approach (Section 2) to guide the 

use of predictive models in engineering design.  A Bayesian procedure (Section 3) is 

employed to combine the data from physical experiments and computer models for 

generating prediction models and quantifying the prediction uncertainty. The Bayesian 

approach provides a framework for drawing inferences for predictions in the intended but 

untested design domain.  Our approach is generic enough to handle cases where design 

settings of physical experiments and the computer model may or may not overlap.  When 

limited amount of physical data is available, the approach is capable of taking into 

account scientific knowledge as well as designer’s belief based on past experience in the 

form of prior distributions of model parameters. With the quantified uncertainty of 

Bayesian prediction models, we further develop some decision validation metrics 

(Section 4) to provide confidence measures of using Bayesian prediction in making a 

specific design choice for a given design objective. The implications of using such 

metrics are examined and the computational requirements are discussed for cases with 

either discrete or continuous design alternatives.  Our approach is then demonstrated 

through an illustrative example of robust engine piston design in Section 5.  Section 6 is 

the closure of this paper. 
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2.    PROPOSED DESIGN-DRIVEN VALIDATION FRAMEWORK 

In contrast from the traditional viewpoint where model validation is viewed as the 

means to assess the accuracy of a computer model, it is viewed in this work as a process 

to improve designer’s confidence in making a design choice based on the improved 

predictive model resulted from the validation process. As shown in the comparison in 

Fig. 2, the traditional model validation framework (Fig. 2a) is restricted to validating 

(accepting) or invalidating (rejecting) a computer model by directly comparing the results 

from both computer and physical experiments.  Once a computer model is “validated”, it 

will then be passed to designers for design purposes. Due to limited resources for 

physical experiments, it is unlikely that a model can be validated across the whole design 

space, and the validity of a “validated” model at limited settings of model inputs can 

hardly be extended to untested regions.   

 
                (a) Traditional Framework                     (b)  Proposed Framework 

Figure 2. Comparison of Traditional and Proposed Validation Approaches 

(UQ - Uncertainty Quantification) 

 

A design-driven model validation approach is proposed in this work with the 

emphasis on enhancing the predictive capability of a computer model for the purpose of 

Design objective function         and UQ 
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design decision making (Fig. 2b).  A predictive model, which is the prediction of a real 

model response, denoted as predictor ˆ ( )rY x , and the associated uncertainty 

quantification (UQ), are first obtained by combining the results from both computer and 

physical experiments.   The predictive model can be viewed as a corrected computer 

model by characterizing the bias between the computer model and the reality.  A 

Bayesian procedure for obtaining the predictive model, called Bayesian prediction model, 

with uncertainty quantification (UQ) is described in Section 3.  To validate the use of the 

Bayesian prediction model for design, the next step is to construct a design objective 

function ( )f x  based on specific design requirements and preference posed by designers. 

For example, when uncertainty of design variables/parameters is considered, ( )f x could 

be a typical robust design objective (Chen et al. 1996) as a function of both optimizing 

the mean yµ  and minimizing the standard deviation yσ  of performance y.  Prediction of 

the design objective value ˆ ( )f x  will then be derived and its uncertainty will be 

quantified by considering model uncertainty in ( )y x .  Given a feasible set of design 

alternatives, an optimal design (denoted as *x ) could be identified by optimizing ˆ ( )f x .   

For a candidate optimal design *x , the decision validation metric (denoted as 

( *)DM x ) is used to assess the validity of using the Bayesian prediction model for 

choosing *x  as the optimum.  Some decision validation metrics proposed in this work 

are presented in Section 4.  For a pre-specified confidence level (or threshold Pth, such as 

90%), if DM  ≥  Pth, the optimal design *x  is concluded with the confidence level as high 

as DM . If DM  < Pth, it means that the design objective function ˆ ( )f x can not provide 

sufficient resolution to support the design decision *x , and more information needs to be 

gathered through additional physical experiments to reduce the uncertainty of ˆ ( )f x . 

When the physical experiments are added sequentially, the validation process is repeated 

until the validity requirement is satisfied.  In the following sections, we will provide some 

details of the key elements of the proposed validation framework, i.e., the Bayesian 

procedure for model prediction and the evaluation of decision validation metrics. 

Sequential experiment design is not covered in this paper due to the space limit.  
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3. THE BAYESIAN PROCEDURE FOR MODEL PREDICTION 

Central to the proposed validation framework is the prediction of the amount by 

which a model output may differ from the true value, which is often complicated by the 

presence of uncertainties and errors from various sources, such as model (lack of 

knowledge), parametric, algorithmic, computational, and system variability, as well as 

testing data that is used to compare with the model prediction.  Different ways of 

classifying uncertainties in model prediction are seen in the literature (Apostolakis 1994; 

Trucano, 1998; Hazelrigg, 1999; Oberkampf et al., 1999).  In this work we assume that 

that the computational error has been satisfactorily resolved or eliminated through 

“verification” (Oberkampf and Trucano, 2000).  Using x to represent design variables and 

y stand for model response, the relationship between the experimental observation 

( )eY x and the result generated by a computer model ( )mY x  can often be generalized as 

follows: 

    ( ) ( ) ( ) ( )e mY Y δ ε= + +x x x x ,                                           (1) 

where ( )ε x  is the random variable representing the experimental error (relating to both 

experimental setup and measurement) that may depend on x , and ( )δ x  is the error of the 

model , or called the prediction bias, i.e.,  

( ) ( ) ( )r mY Yδ = −x x x ,                                              (2) 

which captures the model inadequacy, where ( )rY x  is the true output. 

In the above equations, the prediction bias ( )δ x is more closely related to the 

assessment of model accuracy, while the prediction of the true model output ( )rY x  is 

essential to assess the probability that a design alternative will produce an outcome that is 

preferred to or indifferent to other alternatives. Most research in validating computer 

models has focused on estimating prediction bias, but much less work had been done on 

characterizing prediction uncertainty and prediction bias under general situations.  It can 

be noted from Eqn. (2) that estimating the prediction bias ( )δ x  is an intermediate step for 

estimating the true model output ( )rY x .  Based on the experimental data, outputs of the 

computer model, and the experimental error ( )ε x , the estimated prediction error, ˆ( )δ x , 

and its probability distribution is first obtained. The estimated prediction, ˆ ( )rY x , can 
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then be obtained by ˆˆ ( ) ( ) ( )r mY Y δ= +x x x .  ˆ ( )rY x is the so-called Bayesian prediction 

model to obtain the candidate optimal design in the subsequent procedure, while 

uncertainty quantification (UQ) of ˆ ( )rY x  plays a critical role in validation. 

In this work, a Bayesian approach is used to provide uncertainty quantification of 

both ˆ( )δ x and ˆ ( )rY x .  Theoretical details of the Bayesian approach can be found in 

Wang et al. (2006), while related references for Bayesian analysis could be found in Qian 

and Wu (2005) and Reese et al. (2004). Bayesian inferences are preferred as they require 

fewer assumptions and are more flexible for engineering applications where it may be too 

expensive to obtain experimental data.  In addition, Bayesian methods may be preferable 

as additional information or designer’s belief can be incorporated through prior 

distributions.  Below, some details of each step in the Bayesian procedure are provided. It 

should be pointed out that the mathematical framework considered in this work is similar 

to the one in Kennedy and O’Hagan (2001), however, our work focuses on characterizing 

the behavior of the prediction bias ( )δ x  while the emphasis of Kennedy and O’Hagan’s 

work is on the calibration of computer models based on physical observations, with the 

term ( )mY x  in Eqn. (1) replaced by ( , )mYρ Θx , where ρ  is an unknown regression 

parameter, and Θ  is the vector of calibration parameters.  

(1) Collect both physical and computer model data 

Both physical observations and computer model outputs are essential to model 

validation. Let 1( )T
px x= , ,x "  be a point in a p-dimensional design variable space. Let 

1{ }
ee nD = , ,x x"  and 1{ }

mnmD = , ,′ ′x x" be the design settings for physical experiments 

and computer experiments, respectively; 1( ( ) ( ))
e

e e e T
ny y= , ,y x x"  and 

1( ( ) ( ))
m

m m m T
ny y= , ,′ ′y x x"  be the corresponding physical experimental observations 

and deterministic computer model outputs, respectively. Note that eD  and mD  may or 

may not overlap. Physical observations are desired to be as many as possible and close to 

the intended design region. Compared to physical observations, computer model outputs 

are less costly and should be simulated at design settings where the physical observations 

are available and close, if not within, the intended design regions.   



 10

When eD  and mD  do not overlap and computer simulations are expensive and time-

consuming, a metamodel ( ˆ ( )mY x ) that interpolates the computer model data may be used 

to replace ( )mY x .  One approach to approximating ( )mY ⋅  is to fit a Gaussian process 

model based on the available computer experiments (Santner et al., 2003).  

(2) Determine priors of Gaussian process parameters for prediction bias 

One advantage of the Bayesian approach is its ability to take into account scientific 

knowledge and past information in the form of prior distributions for model parameters. 

From Eqn (1), the prediction bias ( )δ x  could be formulated as ( )δ =x  

( ) ( ) ( )e mY Y ε− −x x x . In this paper ( )δ x  is treated as a Gaussian process, with the 

process parameters denoted as 2 2( , , , )δ δ δ εθ σ β φ σ= , which respectively represent the 

variance parameter ( 2
δσ ), the location parameter ( δβ ), the correlation parameter ( δφ ), and 

the variance parameter related to the experiment error  ( )ε x  ( 2
εσ ). The following forms 

of priors for the variance parameter 2
δσ  and location parameter δβ  are adopted (similar 

treatments could be found in Reese et al., 2004, Qian and Wu, 2005):  
2 2 2( ) ( ),IG Nδ δ δ δ δ δ δ δσ α γ β σ σ, , | ,b V∼ ∼  

where ( )IG α γ,  denotes the inverse gamma distribution. As will be detailed in the 
following description of step (3), to simplify the Bayesian analysis, no priors are 
specified for δφ  and 2

εσ  which are instead treated as fixed and estimated directly from 
data. 

(3) Compute the posterior of prediction bias 

Based on the Bayes Theory, the posterior of the prediction bias ( )δ x  given physical 
observations ey  and computer outputs my  can be obtained by integrating out θ  through 
the following equation 

( ( ) ) ( ( ) ) ( )de m e m e mp p p
θ

δ δ θ θ θ| , = | , , | ,∫x y y x y y y y .                          (3) 

The density function ( ( ) )e mp δ θ| , ,x y y can be easily computed based on the data from 

both computer model and physical experiments. With some tedious mathematical 

derivations (refer to Appendix and Wang et al., 2006 for proof), it could be shown that 

the posterior of ( )δ ⋅  follows a t-distribution: 
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2( ) , ( ( ) ( ))e m
e m e m e mT nδ δ δ δδ φ τ µ σ| , | , | ,| , , , , ,x y y x x∼                             (4) 

with the following degree of freedom, noncentrality, and scale parameters:  

2e m en nδ δα| , = + ,                                                        (5) 

1( ) ( ) ( )( ) ( )
e e

T T e m
e m n nδ δ δ δ δ δ δ δ δµ τ −
| , = + + − − ,x f x A v r x R I y y F A v                   (6) 

112
2 ( ) ( )

( ) (1 )
( ) ( )

e

T T

e m
ne m

Q
n

δ δδ δδ
δ

δ δδ δδ

σ
τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

−−

| ,
| ,

−⎡ ⎤ ⎡ ⎤
= ⋅ − ,⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

V Ff x f x
x

F R Ir x r x
                      (7) 

where 
2 1 12 ( ) ( ) ( )

e e e

e m T e m T
n n nQδ δ δ δ δ δ δ δ δγ τ − −= + − + − + − ,y y R I y y b V b v A v                 (8) 

1 1 1( )
e

T
nδ δ δ δ δτ− − −= + + ,A F R I F V                                              (9) 

1 1( ) ( )
e e

T e m
n nδ δ δ δ δτ − −= + − + .v F R I y y V b                                     (10) 

In the above equations, 1( ( ) ( ))
e

T
nδ δ δ= , ,F f x f x"  is the en qδ×  design matrix, δR  is 

the e en n×  correlation (parameterized by δφ ) matrix of 
enδ , and ( )mr x  is the correlation 

(parameterized by δφ ) between ( )δ x  and 
enδ . Here, 

enδ =
e

e m
n−y y  could be viewed as the 

‘observations’ at setting eD , for the Gaussian process ( )δ x , and 
e

m
ny  is the computer 

model output ( )mY ⋅  (or the metamodel ˆ ( )mY ⋅  in the case that ( )mY ⋅  is expensive to 

compute) at eD . It naturally follows that 
enδ  is essentially the observed bias between 

physical experiments and the computer model (or metamodel) outputs.  

We denote δφ  as the correlation parameter underlying δR and T
δr ; τ  as the ratio of 

2
εσ  to 2

δσ , i.e., 2 2/ε δτ σ σ= , where 2
δσ  denotes the process variance of ( )δ x  while 2

εσ  

denotes the variance of ( )ε x . Unlike ( )δ x  which is assumed to be the Gaussian process 

with spatial correlation structure, ( )ε x  follows identical independent normal distribution 

at different design sites x . To get the marginal posterior of ( )δ x , δφ  and τ  also need to 

be integrated out, which is computationally prohibitive. Alternatively, δφ  and τ  can be 

treated as their true values and estimated with methods such as the Cross Validation (CV) 

(Hastie et al., 2000), Maximum Likelihood Estimates (MLE) (Hastie et al., 2000), 
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Markov Chain Monte Carlo (MCMC) (Geyer, 1992), and Minimum Mean Squared Error 

Estimates (MMSE) (Hastie et al., 2000). 

(4) Compute the prediction of the true behavior to obtain Bayesian prediction model 

The true behavior ( )rY x is predicted using the following equations on the estimations 

of the mean and variance,  

 ˆˆ ( ) ( ) ( )r mY Y δ= +x x x ,                                               (11) 
2[ ( )] [ ( )] ( )r

e mVar Y Var δδ σ | ,= =x x x .                                      (12)   

The covariance between ( )r
iY x  and ( )r

jY x  is given by: 

2 2

( ), ( ) ( ) ( ), ( ) ( )

[ ( ), ( )] [ ( ), ( )] 0 ( , ) ( , )

r r m m
i j i i j j

m m
i j i j e m i j e m i j

Cov Y Y Cov Y Y

Cov Y Y Cov δ δ

δ δ

δ δ σ σ| , | ,

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦
= + = + =

x x x x x x

x x x x x x x x
,    (13) 

where 
112

2 ( )( )
( , ) ( ( , ) ).

( )( )
e

T T
ji

e m i j i j
jnie m

Q R
n

δδ δδδ
δ δ

δδ δδδ

σ
τ

−−

| ,
| ,

⎡ ⎤− ⎡ ⎤⎡ ⎤
= ⋅ − ⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

f xV Ff x
x x x x

r xF R Ir x
       (14) 

When i j= =x x x , Eqn. (14) reduces to Eqn. (7) and Eqn. (13) reduces to Eqn. (12). The 

predictor of the true behavior ˆ ( )rY x , along with its uncertainty quantification, are 

referred to as the Bayesian prediction model in this work. 

In the following section, we will present some design decision validation metrics that 

utilize the information of the predicted objective function ˆ ( )f x at multiple design sites to 

select the best design candidate under model uncertainty and determine the confidence 

associated with the design decision. 

4. SOME DECISION VALIDATION METRICS 

Unlike the existing validation metrics that assess the predictive capability (accuracy) 

of a model, the decision validation metrics MD are proposed and examined in this work to 

provide a probabilistic measure of whether a candidate optimal design is better than other 

design choices with respect to a particular design objective.  Such metrics are desired to 

provide the confidence associated with a design decision with consideration of model 

uncertainty and to guide validation activities.  If large uncertainty exists in model 
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response ( )rY x , subsequently in the design objective ( )f x , the achieved DM  may be 

too low to meet the design validity requirements, forcing designers to add new 

experiments to reduce model uncertainty or to lower the validity requirement. 

Assuming a smaller design objective value is preferred, three types of decision 

validation metrics DM , namely, M
DM , A

DM , and W
DM , are presented as follows, 

 (1) The Multiplicative Metric:  

{ } { }
0 0

, ,

1 1

( *) ( *) ( ) ( ) 0
i d i i d i

K K
M
D i i

X X

M P f f P Z
∈Ω ∉ ∈Ω ∉

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= < = >⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∏ ∏

x x x x

x x x x      (15) 

(2) The Average (Additive) Metric:  

{ } { }
0 0

, ,

1 1( *) ( *) ( ) ( ) 0
i d i i d i

A
D i i

X X

M P f f P Z
K K∈Ω ∉ ∈Ω ∉

= < = >∑ ∑
x x x x

x x x x           (16) 

(3) The Worst-Case Metric:  

{ } { }
0 0

, ,

( *) min ( *) ( ) min ( ) 0
i d i i d i

W
D i i

X X
M P f f P Z

∈Ω ∉ ∈Ω ∉
= < = >

x x x x
x x x x               (17) 

In Eqns. (15-17), the decision metrics are evaluated for a candidate optimal design x*, 

which may be obtained by optimizing the prediction (predictor or mean value) of 

objective function ˆ ( )f x .  The probability { }( *) ( )iP f f<x x is evaluated for comparing 

x* against individually each other design alternatives, where xi (i=1,2,..,K) belongs to the 

set of feasible design alternatives Ωd , excluding those in the indifferentiable region 0X .  

A multiplicative, average, or worst-case evaluation will then be used for determining the 

overall confidence of choosing x* as the optimal design.  For simplification, a random 

variable ( )Z x  = ( ) ( *)f f−x x  (see Eqns. (15-17)) is used to represent the difference 

between ( )f x  and ( *)f x .  The set of feasible design alternatives Ωd could be either 

discrete or continuous.  When Ωd is continuous, competing designs xi will be selected 

across over Ωd. 

The concept of indifferentiable region X0 is introduced to consider the fact that, with 

the consideration of model uncertainty, distinguishing designs with identical mean values 

might not be possible.  This is especially true in a continuous design space, where designs 

in a small neighborhood can be considered as equally good.  Specifically, we define the 
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indifferentiable region(s) X0 as the region(s) (could be either single or disjoint) within 

which the design points are claimed indifferent to x* with a confidence level c (e.g. 

c=95%), for a given tolerance H: 

[ ]{ }0 P | ( ) |X Z H c< >x x� .                                               (18) 

Eqn. (18) means that when there is a high confidence that the difference (either positive 

or negative) between two designs becomes too small (smaller than the tolerance H), the 

two designs become indifferentiable.  

The proposed decision validation metrics in Eqns. (15) and (16) provide averaged 

measures of the probability that the real outcome of x* is better than other design choices, 

representing the confidence of using a Bayesian prediction model to select x* as the 

optimal design.  If DM =1, it indicates that a designer should have full confidence of 

taking x* as the optimal design.  The  metric ( *)W
DM x  in Eqn. (17) stands for the worst-

case of P to be used instead of the average.  Therefore, it only concerns the most 

competitive design (2nd best design xi) to x*, outside the indifferentiable region X0. With 

discrete design alternatives, the computations of all three metrics require the equal 

amount of effort.  However, in the scenario with continuous design alternatives, the 

worst-case metric is the most straightforward and easiest to compute. It can be evaluated 

through optimization by treating the search of the minimum probability 

{ }( *) ( )iP f f<x x  (finding the 2nd best, or most competing, design xi) as an objective and 

considering the boundary of the indifferentiable region as constraint.  Note that the 

indifferentiable region can be multiple or disjoint in some cases. 

By considering the joint distribution of ( )f x  and ( *)f x  , the distribution of ( )Z x  is 

obtained with the mean  

( ) [ ( )] [ ( *)]z E f E fµ = −x x x                                           (19) 

and the variance  

2 ( ) [ ( )] [ ( *)] 2 [ ( ), ( *)]z Var f Var f Cov f fσ = + −x x x x x .                    (20)  

The covariance component in Eqn. (20) should not be ignored, especially when x and x* 

are close to each other. When x=x*, it follows that 2 ( )zσ x  reduces to zero. 



 15

Compared to the Probability of Correct Selection (PCS) measure defined by Chen et 

al. 2000 in the work of ordinal optimization, the metric DM used in this work shares the 

similar idea of assessing probabilistically whether one design option is better than another.  

However, the contexts of these two research works are different.  Chen et al.’s work 

(2000) focused on the ordinal optimization for discrete-event systems; only the discrete 

design options are considered.  In our work DM  is proposed to address the design 

confidence of choosing one design option over the others in cases with both continuous 

and discrete design spaces.  In addition, the indifferentiable region X0 used in the 

definition of DM  is a new concept introduced in our work.   

5. EXAMPLE: ENGINE PISTON DESIGN 

We use the vehicle engine piston design case study previously analyzed in Jin et al. 

(2005) as an illustrative example to demonstrate our approach.   The Noise, Vibration and 

Harshness (NVH) characteristic of the vehicle engine is one of the critical elements of 

customer dissatisfaction. The design goal is to optimize the geometry of the engine piston 

to obtain the minimal piston slap noise (measured in dB).  A robust design scenario is 

considered by treating the design variable also as a random variable considering the 

manufacturing variation. Technical background of the piston design problem can be 

found in Hoffman et al. (2003). To graphically illustrate the results and better explain the 

concepts of the proposed method, only one design variable, the skirt profile (SP), is 

considered. Nevertheless, the same approach can be applied to high-dimensional 

problems.  

 Skirt profile is represented by the unitless characteristic ratio of the shape of an 

engine piston, ranging continuously from 1 to 3.  Previous results show that the skirt 

profile (SP) strongly affects the design performance, slap noise.  Piston slap noise is the 

engine noise resulting from piston secondary motion, which can be simulated using 

ADAMS/Flex, a finite element based multi-body dynamics code.  Nine (9) computer 

experiments are conducted using the finite element model, while nine (9) hypothetical 

physical experiments are considered.  It should be pointed out that nine computer 

experiments are sufficient to capture the behavior of the computer model for this one-

dimensional case, although normally the amount of computer experiments are expected to 
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be more than that of the physical tests.  All data are plotted in Fig. 3, with details 

included in Tables A.1 and A.2. Note the design variable x = SP has been normalized to 

the unit interval [0,1].  
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Figure 3. Physical and computer experiment data (circles: physical experiments; 

triangles: computer experiments) 

5.1 Bayesian Prediction Model and Uncertainty Quantification 
Based on the available data, the Bayesian approach described in Section 3 is 

implemented. For the purpose of comparison, the Bayesian prediction models are 

produced in two stages. In the first stage, we only use the first six(6) points out of the 

nine(9) physical experiment points in Table A.1. The remaining 3 points are added in the 

second stage to demonstrate the impact of adding more experiment data in a sequential 

process.   

Prediction of computer model ˆ ( )mY x  

From the data shown in Tables A.1 and A.2, it is found that there is no overlap 

between eD  and mD , indicating that the settings of the design variable (x) for computer 

outputs are different from those for physical experiments. We first calculate the 

prediction of ˆ ( )mY x  by a normal Gaussian process model (e.g., Kriging). From Fig. 4, it 

is noted that ˆ ( )mY x  passes through all six computer experiment points.  Because for this 

single-dimension case, six points are sufficient to capture the behavior of the computer 

model, the interpolation uncertainty (Apley et al., 2006) of using the normal Gaussian 

process model to replace the computer model can be neglected.  
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Figure 4. Prediction of ˆ ( )mY x , interpolating all nine computer experiments  

Estimation of prediction bias ˆ( )δ x  and uncertainty quantification 

From Eqn. (4), the prediction bias ˆ( )δ x  and the associated uncertainty is characterized by 
the posterior of ( )δ x , given δφ  and τ . Ten-fold cross validation is used to determine the 
optimal values of δφ  and τ  in the similar way as in estimating mφ . The results show the 
optimal setting at τ =2, δφ =22. Since there is little a priori knowledge about 2

δσ  and δβ , 
vague priors are used for this example: 

2 2 2(2 1) (0 )q qIG N
δ δδ δ δ δσ β σ σ, , | , ,I∼ ∼  

where 0k  is a 1k ×  vector of zeros, and kI  is a k k×  identity matrix. Fig. 5 displays the 

predictor of ˆ( )δ x  and the 95% confidence interval. Note the experimental points 

illustrated in Fig. 5 represent the deviation between the physical experiments ( )ey x and 

the model predictions ˆ ( )mY x  (the magnitude of the vertical line segments shown in Fig. 

4).   It is noted that ( )δ x  has a relatively smaller variance (uncertainty) in the range of 

[0 7 0.75]∈ . ,x  , due to the fact that more physical experiments are available in that 

region.  
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Figure 5. Prediction of ˆ( )δ x  (dB) and 95% confidence interval  

Estimation of  ˆ ( )rY x and uncertainty quantification 

Having obtained the predictions of ( )mY x  and posteriors of ( )δ x , the Bayesian 

prediction model, which is the prediction of the true model response, denoted as ˆ ( )rY x , 

is simply the addition of ˆ ( )mY x and ˆ( )δ x . In this case, since the interpolation uncertainty 

of using ˆ ( )mY x to replace the computer model is ignored, the uncertainty of ˆ ( )rY x  is 

contributed by the posterior of ( )δ x . The predictor ˆ ( )rY x and 95% confidence interval 

are illustrated in Fig. 6. 
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Figure 6. Prediction of ˆ ( )rY x (dB) and 95% confidence interval 

Prediction of ˆ ( )f x and uncertainty quantification 
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In this work we consider a typical robust design objective, ( )f x = y ykµ σ+ ⋅ , where 

yµ  and yσ  are the mean and standard deviation of y (piston slap noise), and the 

weighting factor k is chosen as 3.  Note the unit of ( )f x  is dB, the same with y. The 

robust design objective is utilized to reduce the impact of the uncertainty associated with 

the randomness of x , which follows a normal distribution ( ,0.05)N µxx ∼ .  Since the 

uncertainty of ( )rY x  is reducible when more experiment data are added,  it is essentially 

the uncertainty in design objective function ( )f x , due to the model uncertainty, that 

influences the confidence in making a design decision. 

Prediction of ˆ ( )f x and the associated uncertainty quantification could be 

computationally challenging, especially for high-dimensional problems. Approximation 

of the mean and variance of ( )f x  using analytical derivations was discussed by Apley et 

al. (2006). But, the covariance of any two processes ( )if x  and ( )jf x was not addressed 

by their method.  Due to the low dimension of this case study, Monte Carlo simulation 

approach is used. Based on the mean, variance and covariance of ( )rY x  given in Eqns. 

(11)~(13), one can simulate a large amount (e.g. 100) of realizations of the random 

process ( )rY x .  For simplicity, only three of such realizations are selected and shown in 

Fig. 7. Each single realization of ( )rY x  determines the corresponding realization of 

( )f x subject to the randomness of x . As a result, the prediction of ˆ ( )f x and its 

uncertainty could be quantified as shown in the bold lines in Fig. 7.  
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Figure 7.  Prediction of ˆ ( )f x (dB) and 95% confidence interval 
(6 physical experiments)  

5.2 Application of Decision Validation Metrics 

In this section, we apply the decision validation metrics DM  proposed in Section 4 to 

the robust engine piston design. Two design scenarios, i.e., discrete design alternatives 

and continuous design space, are considered separately. 

Scenario 1 - Discrete Design Alternatives 

Suppose five design candidates have been identified as ={0.2, 0.4, 0.5, 0.65, 0.7}ix  . By 

minimizing the mean of ( )if x , x4 is chosen as the candidate optimal design, i.e., 

x*=0.65. Figs. 8 and 9 show the mean and 95% prediction interval of ( )if x  and 

( ) ( ) ( *)i iZ f f= −x x x , respectively, at five candidate points. Note both the mean and 

variance of  ( )iZ x  reduces to zero at xi =x*=x4, because there is no uncertainty in 

comparing the candidate optimal design x* with itself.  Note that 

4
ˆ ˆ( )( 1, 2,3,5) ( ) 0iZ i Z= > =x x , i.e., the mean of ( )iZ x  at other designs other than x4 are 

all positive. However, due to the uncertainty of  ( )( 1,2,3,5)iZ i =x , its value may become 

negative, which indicates that it is likely that xi may be better than x4.  
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Figure 8. Mean and 95% confidence interval of ( )if x (dB) at five design candidates 

(6 physical experiments) 
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Figure 9. Mean and 95% confidence interval of ( )iZ x (dB) at five design candidates 

(6 physical experiments) 
 

Table 1 provides some details in calculating the three different forms of decision 

validation metrics MD using the Bayesian prediction model obtained from 6 physical 

experiments. The tolerance and confidence specified for the indifferentiable region X0 in 

this example are taken as H=0.5 (dB) and c=95%. The tolerance zone formed by the 

positive and negative H lines are marked in Fig. 9.  By checking the probability value 

[ ( ) ]iP Z H<x ,  it is found that no point among the four design candidates (i.e., x1, x2, x3, 

and x5) should be claimed indifferentiable to x*. Therefore xi is set at all these four 

design candidates in calculating the decision validation metrics DM . The three types of 

metrics DM  proposed in Eqns. (15) to (17) are calculated as 0.8017, 0.8118, and 0.6204, 

respectively. When using the ‘worst-case’ metric, x5 is identified as the worst-case point 

or the most competing (2nd best) design to x*.  The results of metrics DM  indicate the 

confidence of using the Bayesian prediction model based on 6 physical experiments for 

choosing x4 as the optimal design among five given design alternatives. 

Table 1. Calculation of the decision validation metrics 
(H=0.5, c=95%, 6 physical experiments)  

ix  1x  2x  3x  4x (x*) 5x  

[ ( ) ]iP Z H<x  0.1968 0.4152 0.5568  0.9114 
0 ?i X∈x  No No No  No 

[ ( ) 0]iP Z >x  0.9544 0.8742 0.7981  0.6204 
M
DM (multip) 0.8017 
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A
DM (additive) 0.8118 

W
DM (worst-case) 0.6204 (worst-case point: 5x ) 

 

Table 2 shows the results of decision validation metrics DM  with 6＋3 physical 

experiments. With the reduced uncertainty in ( )iZ x  by the inclusion of 3 additional 

experiments, it is found 5[ ( ) ]P Z H<x  = 0.9799, indicating that 5x  should be claimed 

indifferentiable to x*=x4, and excluded for calculating DM . The three DM  quantities are 

now changed to 0.9080, 0.6619, and 0.7826, respectively, all higher than the results 

based on 6 experiments (see Table 1). The improved confidence of claiming x4 as the 

optimal design resulted from the improved resolution of ( )f x . Because x5 is considered 

as indifferentiable to x*=x4, x3 becomes the most competing design to x* under the 

worst-case metric. 

Table 2. Calculation of the decision validation metrics 
 (H=0.5, c=95%, 6+3 physical experiments)  

ix  1x  2x  3x  4x (x*) 5x  

[ ( ) ]iP Z H<x  0.1910 0.3790 0.6111  0.9799 
0 ?i X∈x  No No No  Yes 

[ ( ) 0]iP Z >x  0.9616 0.9034 0.7826   
M
DM  (multip) 0.9080 

A
DM  (additive) 0.6619 

W
DM  (worst-case) 0.7826 (worst-case point: 3x ) 

Scenario 2 - Continuous Design Alternatives 

Calculating DM  in a continuous design space is more challenging than in a discrete 

design space. By definition, the first two types of decision validation metrics essentially 

take average of x* versus xi chosen over the whole feasible design space dΩ  excluding 

the indifferentiable region X0. In high dimensional situations, this could be implemented 

by sampling a large amount of points of competing designs xi.  However the sampling of 

xi is non-trivial especially because the boundary of X0 could be irregular.  For hypercubic 

regions, space-filling DOE approaches, e.g., the Optimal Latin Hypercube (Jin et al., 

2005) could be utilized to generate the sampling points.  Due to the difficulties brought 

up, we find that the ‘worst-case’ metric is the easiest to implement for problems with a 
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continuous design space.  Optimization could be used to locate the worst-case point xi, by 

taking [ ( ) 0]P Z >x  as the objective to minimize and treating [ ( ) ]P Z H c< <x  (i.e., 

0X∉x ) and d∈Ωx as the constraints. Because only one design variable is considered in 

our example problem, we evenly sampled 101 grid points in the span of [0, 1] of x for 

illustration. 

Figs. 10a and 10b show respectively the mean and 95% confidence interval of 

( )Z x for two experimental sizes, 6 and 6+3, where the solid bold portions indicate the 

indifferentiable region X0 in the small neighborhood of x* (identified by minimizing 

ˆ ( )if x ).  It is noted that the indifferentiable region X0 expands when the uncertainty in 

( )Z x is reduced. For the ‘worst-case’ metric, the most competing design to x* is located 

at the boundary of X0. Table 3 provides the calculated DM  values based on all three 

proposed forms. The increased DM  values with more physical experiments reflect the 

improved confidence of claiming x4 as the optimal design after the resolution of ( )f x is 

improved. 
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(a) 6 physical experiments                     (b) 6+3 physical experiments 

Figure 10. Mean and 95% confidence interval of ( )Z x (dB) (H=0.5, c=95%) 
 

Table 3. Calculation of desion validation metrics  
at different tolerance H and experiment size  (c=95%) 
 H=0.5(dB) H=0.9(dB) 

Phy. exp. # 6 6+3 6 6+3 
M
DM (multip) 0.8953 0.9203 0.9281 0.9535 

A
DM (additive) 0.8122 0.8161 0.7516 0.7457 

W
DM (worst-case) 0.5947 0.6289 0.6706 0.7341 

Worst-case point x=0.69 x=0.59 x=0.73 x=0.53 

x* worst-case point

H 
H 



 24

 
Fig. 11 also shows the results when the tolerance H is set at a higher value, 0.9 (dB). It is 

noted that the indifferentiable region X0 expands with more designs previously 

considered as competing now being included as indifferentiable to x*. Multiplicative and 

Worst-case metrics increase as a result of the less strict tolerance, which is an expected 

outcome because when a larger tolerance H is specified by a designer, it implies that 

lower resolution of the model is demanded.   
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                    (a) 6 physical experiments                      (b) 6+3 physical experiments 

Figure 11. Mean and 95% confidence interval of ( )Z x (H=0.9, c=95%) 

6. CLOSURE 
In this work, a design-driven validation approach is proposed along with a Bayesian 

prediction procedure that provides quantitative assessments of model uncertainty as well 

as some decision validation metrics that provide probabilistic assessments of designer’s 

confidence in making a specific design choice.  Unlike most of the existing model 

validation works that focus on the assessment of model accuracy, model validation is 

viewed in this work as a process to improve designer’s confidence in making a design 

choice using the improved predictive model, which is the augmented model that includes 

both the original computer model as well as the estimate of the bias function. 

Our work results in a full Bayesian analysis procedure for predicting computer model 

bias and the true model output.  Since the analytical derivation is obtained for Bayesian 

model parameters, our approach is expected to be more accurate and economically sound 

compared to the conventional numerical approach to Bayesian analysis.  In engineering 

applications where it is too expensive to obtain experimental data, the Bayesian inference 

approach offers much flexibility as additional design knowledge and information can be 

H 

H 
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easily incorporated through prior distributions.  It also offers rigorous methods for 

quantifying the model uncertainty in an intended design domain that may interpolate as 

well as extrapolate from a tested domain.  With the Bayesian approach, uncertainty in 

prediction related to the lack of experiment data can be captured by the magnitude of 

uncertainty of the bias function. 

Even though our approach is used for validating deterministic models, various 

sources of uncertainties are considered. Uncertainties associated with physical 

experiment setup and measurements are modeled as experiment error.  We have treated 

the model uncertainty derived from the bias function and the parameter uncertainty 

related to a design condition differently.  The consideration of parameter uncertainty is 

embedded into the design objective formulation, such as the robust design objective, 

while the prediction uncertainty of a design objective is quantified with respect to only 

the model uncertainty.  Treating model uncertainty separately from design 

variable/parameter uncertainty is especially useful for guiding the sequential 

experimentation process, as its goal is to reduce model uncertainty.   

Our work offers a new and improved way of viewing model validation by relating its 

definition to a specific design choice related to a specific design objective.  The approach 

can be used to overcome the limitations of many existing model validation approaches by 

providing direct estimate of the global impact of uncertainty sources on the confidence in 

a design decision.  Our proposed decision validity metrics are generally applicable for 

both cases with either a discrete or continuous set of design candidates, with the worst-

case metric demonstrated to be the most appropriate.  As it has been illustrated, besides 

the model itself, the validation result highly depends on subjective inputs from designers, 

such as the construction of the design objective function, and the specification of 

tolerance and confidence level in identifying the indifferentiable region. 

Even though our approach is demonstrated for a simplified one dimensional 

engineering design problem for ease of visualization, the same approach can be applied to 

problems with multidimensional design inputs and the interest is always to provide the 

probabilistic assessment on whether the design objective value of one particular design is 

better than the others.  Since the analytical derivation has been obtained for implementing 
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the Bayesian approach, the proposed method can be easily extended to multidimensional 

problems. 

Future research is planned for particularizing the proposed Bayesian procedure and 

statistical inferences for specific engineering applications where the natures of available 

experimental and computational data vary.  Methods for incorporating designers’ belief 

into Bayesian modeling based on prior knowledge and experience will be further 

examined.  The obtained bias function can be further used to assess the global predictive 

capability of a model over both the tested and untested regions.  Strategies of using 

decision validation metrics for guiding the sequential experimentation is also being 

developed.  The role of decision validation metrics in engineering design will be further 

extended by introducing not only product design decisions but also decisions in allocating 

the resources for physical and computer experiments. This will require the incorporation 

of decision analysis techniques to study the tradeoffs involved in model refinement and 

uncertainty reduction. 

ACKNOWLEDGMENTS 
The grant support from National Science Foundation (NSF) to this collaborative 

research between Northwestern University (DMI – 0522662) and Georgia Tech (DMI-

0522366) is greatly appreciated.  The views expressed are those of the authors and do not 

necessarily reflect the views of the sponsors.  We are grateful for the insights provided by 

anonymous reviewers, whose comments have helped us tremendously for improving the 

clarity of the paper. 

APPENDIX 
Table A.1 Nine (9) physical experiments 

i 1 2 3 4 5 6 7 

i eD∈x  0.3000 0.5000 0.7000 0.7200 0.7400 0.8500 0.6300 

( )e
iy x  55.4815 54.8042 54.6803 54.9198 54.8282 55.4664 54.7931 

i 8 9      

i eD∈x  0.6600 0.6900      

( )e
iy x  54.7150 54.8351      

 
Table A.2 Nine (9) computer experiments 

i 1 2 3 4 5 6 7 

i mD∈x  0.0200 0.1400 0.2600 0.3800 0.5000 0.6200 0.7400 

( )m
iy x  56.2011 55.6167 55.4132 55.3859 55.1350 54.7155 54.6321 
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i 8 9      

i mD∈x  0.8600 0.9800      

( )m
iy x  55.2739 56.5551      

 
Derivations of Eqns. (4-10) 

 
(1) The Posteriors of δβ  and 2

δσ  
The posteriors of δβ  and 2

δσ  are  
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(2) The posterior of ( )δ x  
It can be shown that 
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and the posterior of ( )δ x  given δφ  and τ  is  
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where 1( )
enδ τ −= +B R I , and ( ) ( )T
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Performing the integration over 2
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where C  is any constant, then  
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which implies that ( ) e mδ | ,x y y  has a noncentral t  distribution with degree of freedom 
2 enδα + , noncentrality parameter , ( )e mδµ | x , and scale parameter , ( )e mδσ | x .  
Expanding γ  gives  
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