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ABSTRACT 

Metamodeling approach has been widely used due to the 
high computational cost of using high-fidelity simulations in 
engineering design.  The accuracy of metamodels is directly 
related to the experimental designs used. Optimal experimental 
designs have been shown to have good “space filling” and 
projective properties.  However, the high cost in constructing 
them limits their use. In this paper, a new algorithm for 
constructing optimal experimental designs is developed. There 
are two major developments involved in this work.  One is on 
developing an efficient global optimal search algorithm, named 
as enhanced stochastic evolutionary (ESE) algorithm.  The 
other is on developing efficient algorithms for evaluating 
optimality criteria.  The proposed algorithm is compared to two 
existing algorithms and is found to be much more efficient in 
terms of the computation time, the number of exchanges 
needed for generating new designs, and the achieved optimality 
criteria. The algorithm is also very flexible to construct various 
classes of optimal designs to retain certain structural properties.  
Key words:  metamodeling, optimal design, computer 
experiments, stochastic evolutionary algorithm 

∗   
1. INTRODUCTION 

Metamodeling approach has been widely used due to the 
high computational cost of using high-fidelity simulations in 
engineering design.  While the accuracy of an approximation is 
directly related to the metamodeling approach itself, design of 
computer experiments, or called sampling (for simulations) also 
has a considerable effect on the accuracy of a metamodel.  As 
more details will be provided later, design of computer 
experiments could be formulated as an optimization problem 
for which finding the globally optimal design (locations of 
multiple samples) involves combinatorial exhaustive search and 
is computationally prohibitive even for a small dimensional 
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problem. Developing an efficient sample construction 
algorithm for optimizing design of computer experiments is the 
focus of this paper.  

It is generally believed that a good design for computer 
experiments should be “space-filling” which means that the 
sample points should spread out over the entire design space as 
evenly as possible to capture the design behavior.  Because in 
most of problems only a small group of factors are virtually 
significant, it is also desired that there are no replicates or 
significant point-clustering in the projection of the design onto 
the subspace of significant (or called effective) factors. 
Tradeoff often has to be made between the aforementioned 
space filling property and the projective property in low-
dimensional subspaces.  

Various designs (or sampling techniques) have been used 
for computer experiments. Koehler and Owen (1996) provided 
a good review on design and analysis of computer experiments. 
Simpson, et al. (2001) compared five different experimental 
designs and four metamodeling approaches in terms of their 
capability to generate accurate approximations.  Existing 
methods can be roughly put into two categories. One category 
of designs are constructed by combinatorial, geometrical or 
algebraic approaches, such as Latin hypercube designs (LHD) 
(McKay, et al., 1979), orthogonal arrays (OA) (Owen, 1992), 
orthogonal array-based Latin hypercube designs (Tang, 1993), 
etc.  Those designs often have good projective property in low-
dimensional subspaces; however, their sample points in high or 
full-dimensional space are scattered randomly. The other 
category of designs are constructed by algorithmic approaches 
under certain optimality criteria, such as minimax and maximin 
designs (Johnson, et. al., 1990), maximum entropy designs 
(Currin, et al., 1991), integrated mean squared-error (IMSE) 
designs (Sacks, et. al., 1989), and uniform designs (Fang and 
Wang, 1994). Those designs usually have good space-filling 
properties. However, obtaining those designs can be either 
difficult or computationally intractable. Some optimal designs 
may not have good projective properties in low-dimensional 
subspaces. For instance, Morris and Mitchell (1995) found that 



 2 Copyright © 2003 by ASME 

maximin distance designs are often concentrated in the corners 
of the design space when the number of points is relatively 
small compared to the number of variables.    

To improve the low-dimensional projective property as 
well as to maintain a good computational efficiency in 
sampling, some researchers propose to search an optimal design 
within the class of LHDs, which have good projective 
properties in each dimension and still have much freedom in 
generating distinct candidate designs. Morris and Mitchell 
(1995) introduced optimal LHDs based the pφ criterion (a 
variant of the maximin distance criterion); Parks (1994) 
introduced optimal LHDs based on either the maximum 
entropy criterion or the IMSE criterion; Fang, et al (2002) 
introduced optimal LHDs based on the Centered L2 discrepancy 
criterion. Other classes of designs that have good projective 
properties in two-dimensional (or higher) subspace, e.g., OA-
based LHDs, are also promising.    

Searching the optimal design of experiments within a class 
of designs (e.g., LHD), even though more tractable than 
searching in the entire sample space without any restrictions, is 
still difficult to solve exactly.  Exhaustive search method is 
computationally prohibitive even for a small problem. For 
example, for optimizing 10×4 LHDs (10 runs, 4 factors), the 
number of distinct designs is more than 1022.  It is more 
practical to solve optimal design (of experiments) problems 
approximately.  Toward this effort, Morris and Mitchell (1995) 
adapted a version of simulated annealing (SA) algorithm for 
constructing optimal LHDs; Park (1994) developed a rowwise 
element exchange algorithm for constructing optimal LHDs; 
Ye, et al (2000) used the columnwise-pairwise (CP) algorithm 
(Li and Wu, 1997) for constructing optimal symmetrical LHDs; 
Fang, et al (2002) adapted the threshold accepting (TA) 
algorithm (essentially a variant of SA) in constructing optimal 
LHD. The optimal designs constructed by these algorithms 
have been shown to have a good space filling property. 
However, the computational cost of these existing algorithms is 
generally high. For example, Ye, et al (2000) reported that 
generating an optimal 25×4 LHDs using CP could take several 
hours on a Sun SPARC 20 workstation. For a design as large as 
100×10, the computational cost could be formidable; thus, 
search processes often stopped before finding a good design.  

In this paper, we propose an algorithm that is able to 
quickly construct a good design of experiments given a limited 
computational resource but also has the capability of moving 
away from a locally optimal design. There are two major 
developments involved.  One is on developing an efficient 
global optimal search algorithm, named as the enhanced 
stochastic evolutionary (ESE) algorithm.  The other is on 
developing efficient algorithms for evaluating optimality 
criteria (such as the entropy criterion, the φp criterion, and the 
CL2 criterion) to facilitate the search of optimal experimental 
designs.  The proposed method is especially useful for 
constructing median to large-sized design of experiments.   For 
example, for a 100×10 LHD, the proposed algorithm is able to 
find a good design within minutes, if not within seconds.  
Furthermore, the algorithm is able to work on different classes 
of designs and retain certain special structural properties, e.g., 
the balance property of LHDs and the orthogonality of OA and 
OA-based LHDs.  Due to the limited space, in this paper, we 
show only how it is used to optimize LHDs.  

2. THE TECHNOLOGICAL BASE 
An experimental design with n runs and m factors is 

usually written as an n×m matrix X = [x1, x2,...,xn]T, where each 
row xi

T
 =[xi1,xi2,...,xim] stands for an experimental run and each 

column stands for a factor or a variable. The optimal 
experimental design problem we are interested is to search a 
design X* in a given design class Z, which optimizes (for 
simplicity, minimization is considered) a given optimality 
criterion f, i.e,  
                        )(min X

X
f

Z∈
.  (1) 

In Sections 2.1 and 2.2, descriptions of experimental 
designs with special structural properties and different 
optimality criteria will be given, respectively.  Section 2.3 is an 
introduction of the existing sample construction algorithms. 

 
2.1. Designs With Special Structural Properties 
2.1.1. Balanced Design 

A column in a design is balanced if the number of runs 
assigned to each level of the column is the same.  A design is 
called a balanced design if all columns of the design are 
balanced (c.f., Li, 1997). The concept of balanced designs 
covers a wide range of designs of interest. For example, OAs 
and LHDs are special cases of balanced designs. A balanced 
design with n runs and m factors is denoted as: )...( 21 mn qqqU , 
where qi is the number of levels for the ith column. If all the qi’s 
in a balanced design are equal, the design is said to be 
symmetrical and denoted as )( m

n qU ; otherwise, it is said to be 
mixed-level or asymmetrical.   

 
2.1.2. Latin Hypercube Design 

A LHD (McKay et al., 1979) is an n×m matrix in which 
each column is a random permutation of {1, 2, …, n}.  It has 
good projective properties on any single dimension. LHDs are 
special cases of symmetrical balanced designs with its level 
numbers equal to run numbers. LHDs have been applied in 
many computer experiments where all the factors (variables) 
are continuous. However, in the case that some factors are 
discrete or have to be fixed at certain given values, 
asymmetrical balanced designs are more appropriate: for 
continuous factors, the number of levels could be set to be 
equal to the number of runs; for other factors, the number of 
levels could be set based on the discrete levels of the factors. 

 
2.1.3. Orthogonal Array (OA) and OA-based LHD (OL) 

A design is called a strength-r orthogonal array and 
denoted as );...( 21 rqqqOA mn , if all possible level combinations 
for any r factors appear equally often (Owen, 1992; Hedayat et 
al., 1999). OAs are special cases of balanced designs with 
orthogonality between columns. Geometrically, the projection 
of a strength-r OA onto a r-dimensional subspace of factors i1, 
i2,...,ir will be a qi1×qi2×..qir grid. Strength-2 OAs have been 
extensively used for planning experiments in industry. 
However, when a large number of factors are studied but only a 
few of them are virtually significant, OA projected onto the 
subspace of the significant factors can result in replication of 
points. For example, each one-dimensional projection of an 
OA16(45;2) has only 4 distinct points. To avoid replications in 
projections, Tang (1993) proposed to use OA to construct an 
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improved LHD, called OA-based LHD (OL), which to some 
degree inherits both the r-dimensional uniformity of a strength-
r OA and one-dimensional uniformity of LHD.   

 
2.2. Optimality Criteria 

Optimal criteria are used to achieve the space-filling 
property in design of computer experiments. Three widely used 
optimality criteria are considered in this work. 

  
2.2.1. Maximin Distance Criterion and φp Criterion 

A design is called a maximin distance design (Johnson, et 
al, 1990) if it maximizes the minimum inter-site distance: 

),(min
,,1 jijinji

d xx
≠≤≤

, (2) 

where d(xi, xj) is the distance between two sample points xi and 

xj: 
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Morris and Mitchell (1995) proposed an intuitively 
appealing extension of the maximin distance criterion. For a 
given design, by sorting all the inter-sited distance dij (1≤ i, j 
≤n, i ≠ j ), a distance list (d1, d2, ..., ds) and an index list (J1, 
J2,..., Js) can be obtained, where di’s are distinct distance values 
with d1<d2<...<ds, Ji is the number of pairs of sites in the design 
separated by di, s is the number of distinct distance values. A 
design is called a φp-optimal design if it minimizes: 

ps
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where p is a positive integer.  With a very large p, the minimum 
distance d1 will dominate all subsequent items. In that case, the 
φp criterion is equivalent to the maximin distance criterion.  

 
2.2.2. Entropy Criterion 

Shannon (1948) used entropy to quantify the "amount of 
information": the lower the entropy, the more precise the 
knowledge is. From the Bayesian viewpoint, the lower the 
posterior entropy, the smaller is the uncertainty in the 
prediction of the response at unobserved sites.  Minimizing the 
posterior entropy is equivalent to finding a set of design points 
on which we have the least knowledge. It has been further 
shown that the entropy criterion is equivalent to minimizing the 
following (see, e.g., Koehler and Owen, 1996): 
                    Rlog− , (5)  
where R is the correlation matrix of the experimental design 
matrix T

n ],...,,[ 21 xxxX = , whose elements are: 
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where θk (k=1,..,m) are correlation coefficients.  

 

2.2.3. Centered L2 Discrepancy Criterion 

The Lp discrepancy is a measure of the difference between 
the empirical cumulative distribution function of an 
experimental design and the uniform cumulative distribution 
function. In other words, the Lp discrepancy is a measure of 

non-uniformity of a design. Among Lp discrepancy, L2 
discrepancy is used most frequently since it can be expressed 
analytically and is much easier to compute. Hickernell (1998) 
proposed three formulas of L2 discrepancy, among which the 
centered L2-discrepancy (CL2) seems the most interesting.  

.)
2
15.0

2
15.0

2
11(1

)5.0
2
15.0

2
11(2

12
13)(

1 1 1
2

1 1

2
2

2
2

��∏

�∏

= = =

= =

−−−+−++

−−−+−�
�

�
�
�

�=

n

i

n

j

m

k
jkikjkik

n

i

m

k
ikik

xxxx
n

xx
n

CL X
 (7) 

A design is called uniform design if it minimizes the 
centered L2 discrepancy (Fang, et al, 2000).  

 
2.3. Existing Algorithms for Constructing Experiments 

A typical experiment-constructing algorithm searches a 
good design of experiments, represented by X, repeatedly in the 
following procedure: 

1. Start from a randomly chosen starting design X0; 
2. Construct a new design (or a set of new designs) by 

some kinds of updating operations on the current design;  
3. Compute the criterion value of the new design and 

decide whether to replace the current design with the new one. 
Updating operations are critical in sample construction 

algorithms. There are two major types of operations, i.e., 
rowwise operations and columnwise operations. A rowwise 
operation changes a row of a design X, while a columnwise 
operation changes a column. A review on columnwise and 
rowwise algorithms can be found in Li and Wu’s (1997). We 
are interested in columnwise operations since they are 
particularly easier to keep the structure properties of a design in 
relation to columns, such as the balance and orthogonality 
properties introduced earlier in Section 2.1. 

For LHDs or balanced designs in general, permuting 
(changing the values of) individual elements in a column may 
still retain the balance structure of the design but could largely 
change the ‘current’ design and therefore some good features of 
the current design will not be inherited and the optimization 
process may dramatically slow down. In this study, we focus on 
a particular type of columnwise operation, called element-
exchange, which interchanges two distinct elements in a 
column and guarantee to retain the balance property.  Take a 
5×4 LHD for example:  

 
Exchange two 
elements in the 
second column 

     1     2     4     0
     3     4     0     3
     2     1     3     4
     4     0     1     2
     0     3     2     1

     1     2     4     0 
     3     0     0     3 
     2     1     3     4 
     4     4     1     2 
     0     3     2     1  

Figure 1. Element-exchange in a 5××××4 LHD 
 

Obviously, after the element-exchange, the balance 
property of 2nd column is retained, i.e., exactly one run is 
assigned to each of the five levels in the column.  Therefore, 
the design induced by exchanging two elements in the second 
column of the LHD is still a LHD.  Another advantage of using 
element-exchange, as to be shown in Section 3.2, is that the 
evaluation of an optimal criterion of a new design induced by 
an element-exchange can be very efficient. In the rest of this 
section, we review three existing optimization algorithms.  
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2.3.1. CP algorithm 
The CP algorithm (Li and Wu, 1997) starts from an n×m 

randomly chosen design X. Each iteration in the algorithm is 
divided into m steps. At the ith step, the CP algorithm compares 
all possible distinct designs induced by exchanges in the ith 
column of the current design X, and selects the best design Xtry 
from all those designs. If after an iteration, Xtry is better than X, 
i.e., f(Xtry) < f(X), the procedure will be repeated; if no 
improvement is achieved at an iteration, the search will be 
terminated. The CP algorithm could quickly find a locally 
optimal design. However, depending on the starting design, the 
optimal design obtained could be of low quality. In practice, 
with the CP algorithm the optimization process needs to repeat 
for Ns cycles from different starting designs and the best design 
among the optimal designs from all cycles is selected.  

 
2.3.2. SA algorithm 

The SA algorithm (Morris and Mitchell, 1995) begins with 
a randomly chosen design, and proceeds through examination 
of a sequence of new designs, each generated by a randomly 
chosen element-exchange within a randomly chosen column of 
the current design X. A new design Xtry replaces X if it leads to 
an improvement. Otherwise, it will replace X with probability 
of })]()([exp{ Tff try XX −− , where T is a parameter called 
“temperature” in the analogous physical process of annealing of 
solids. Initial set to T0, T will be monotonically reduced by 
some cooling schedule. Morris and Mitchell used T’ = αT as the 
cooling schedule, where α is a constant called cooling factor 
here. SA usually converges slowly to a high quality design.  

 
2.3.3. TA algorithm 

The TA algorithm (Winker and Fang, 1998) is essentially a 
variant of the SA. Instead of accepting a new design with some 
probability, TA determines whether to accept a new design Xtry 
by using a simple deterministic acceptance criterion: 

htry Tff ≤− )()( XX , where Th is called “threshold”.  Th is 
monotonically reduced based on some cooling schedule.  TA 
has been used for constructing uniform designs (c.f., Fang 
2000; Fang, et al, 2002). 

3. PROPOSED ALGORITHM FOR CONSTRUCTING 
OPTIMAL EXPERIMENTAL DESIGN 

In this section, a new algorithm for constructing optimal 
experimental design is presented. Using the columnwise 
element-exchange as the basic operation, our proposed 
algorithm can be used to find efficiently an optimal design that 
maintains the special structural property of a particular class of 
design, e.g., to obtain an optimal LHD when randomly 
choosing LHD as the starting design.   To overcome the 
difficulties associated with the existing methods and to achieve 
much improved efficiency, our proposed method adapts and 
enhances a global search algorithm, i.e., the stochastic 
evolutionary algorithm (Section 3.1), and utilizes efficient 
algorithms for evaluating different optimality criteria (Section 
3.2) that significantly reduces the computational burden.   

 
3.1. Enhanced Stochastic Evolutionary (ESE) Algorithm 

The enhanced stochastic evolutionary (ESE) algorithm is 
used in this work to control the entire process of searching 
optimal designs.  The method is adapted and enhanced from the 

stochastic evolutionary (SE) algorithm, which was developed 
by Saab and Rao (1991) for general combinatorial optimization 
applications. Similar to TA, SE decides whether to accept a 
new design by a threshold-based acceptance criterion. 
However, the strategy (or schedule) for SE to change the value 
of threshold is different from TA or SA. The threshold Th is 
initially set to a small value Th0. The value is incremented based 
on certain ‘warming’ schedules only if it seems that the 
algorithm is stuck at a local optimum; whenever a better 
solution is found in the process of warming up, Th is set back to 
Th0. It is shown (Saab and Rao, 1991) that SE can converge 
much faster than SA and be capable of moving away from low 
quality local optimum to find a high quality solution. However, 
practically, it is often difficult to decide the value of Th0 and the 
warming schedule for different problems. The ESE algorithm 
developed in this work uses a sophisticated combination of 
warming schedule and cooling schedule to control Th so that the 
algorithm can be self-adjusted to suit different experimental 
design problems (i.e., different classes of designs, different 
optimality criteria and different sizes of designs).  

The ESE algorithm, as shown in Fig 2, consists of double 
loops, i.e., the inner loop and the outer loop.  While the inner 
loop constructs new designs by element-exchanges and decides 
whether to accept them based on an acceptance criterion, the 
outer loop controls the entire optimization process by adjusting 
the threshold Th in the acceptance criterion. In the entire 
process, Xbest is used to keep track of the updated best design.  

 
Inner Loop Outer Loop 

Randomly pick J distinct 
element-exchanges 

within column (i mod m) 

Choose the best design 
Xtry from J design 

induced by exchanges 

X = Xtry 
nacpt=nacpt+1

i < M

No 

Yes 

i = 0, nacpt= 0, nimp = 0 

Yes 

f(X) < f(Xbst) 

Xbst = X 
nimp=nimp+1

No 

Yes 

i=i+1 

Xold_best = Xbest 
i = 0, 

 nacpt= 0, nimp = 0 

Inner Loop 

f(Xold_best)- f(Xbest) 
> tol

flagimp= 1

Stopping criterion  
is satisfied? 

flagimp=0

No

Update Th

Yes

Initialize 
X = X0, Xbest = X 

Th = Th0 

No 

Stop 

Yes 

f(Xtry)-f(X)  
≤ T•  random(0,1) 

No

 
Figure 2. Flowchart of the ESE Algorithm 
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3.1.1. Inner Loop 
The inner loop has M iterations. Generally, at iteration i, 

the algorithm randomly picks J distinct element-exchanges in i 
(mod m) column of the current design X and chooses the best 
design Xtry based on the values of optimal criterion. If Xtry is 
better than the current design X, it will be accepted to replace 
X; otherwise, Xtry will be accepted to replace X if it satisfies the 
following acceptance criterion:  
                       )1,0(random⋅≤∆ hTf , (8) 
where )()( XX fff try −=∆ , random(0,1) is a function that 
generates uniform random numbers between 0 and 1 and Th > 0 
is a control parameter, which is called threshold here. If 

hTf ≥∆ , Xtry will never be accepted and if hTf <∆<0 , let S = 
random(0,1), then Xtry will be accepted with probability: 
                   hh TfTfSP ∆−=∆≥ 1)( . (9) 
With this acceptance criterion, a temporarily worse design 
could be accepted and a slightly worse design (i.e., a small f∆ ) 
is more likely to replace the current design than a significantly 
worse design (i.e., a large f∆ ). In addition, a given increase in 
criterion value is more likely to be accepted if Th has a 
relatively high value. The setting of Th will be discussed later.  
The values of parameters involved in the inner loop, i.e., J and 
M, are pre-specified. 

Choice of J: This parameter is the number of distinct 
element exchanges generated at each iteration.  The algorithm 
will compare the designs induced by those exchanges and find 
the best design. This treatment, as CP, could enable the 
algorithm rapidly find a locally optimal design. However, 
unlike CP, which compares all possible distinct designs induced 
by exchanges, our algorithm only randomly picks J distinct 
designs resulted from exchanges. This randomized behavior 
together with the acceptance criterion is intended to allow the 
search to escape from locally optimal designs. Based on our 
testing experience, too large of J may make it more possible to 
be stuck in a locally optimal design for small-sized designs and 
lead to low efficiency for large-sized designs. In our test, we set 
J to be ne/5 but no large than 50, where ne is the number of all 

possible distinct element-exchanges in a column ( ��
�

�
��
�

�

2
n

for a 

LHD and 2)/(
2 i

i qn
q

×��
�

�
��
�

�
 for a balanced design). For mixed-

level balanced designs, the values of J will be different for 
different columns. 

Choice of M:  The parameter is the number of iterations in 
the inner loop, i.e., the number of tries the algorithm will make 
before going on to the next threshold Th. It seems reasonable 
that M should be larger for larger problems. In our test, we set 
M to be Jmne /2 but no larger than 100.  

 
3.1.2. Outer Loop 

Depending on whether any improvement in criterion is 
made in a cycle (a run of the inner loop), the search process of 
ESE (and similarly that of the original SE) can be divided into 
two processes: the improving process and the exploration 
process. Once the criterion is improved after a cycle, i.e., flagimp 
= 1, the search process will be turned to the improving process; 
on the other hand, if no improvement is made in a criterion 

after a cycle, i.e., flagimp = 0, the search process will be turned 
to the exploration process. The improving process is intended 
to rapidly find a locally optimal design, while the exploration 
process is intended to help the algorithm escape from a locally 
optimal design.  The maximum number of cycles is used as the 
stopping criterion. 

The outer loop controls the optimization process by 
updating the value of the threshold Th.  At the beginning of the 
optimization process, Th is set to be a small value, i.e., Th0 = 
0.005×criterion value of the initial design. Unlike the original 
SE, in the improving process of ESE, the value of Th will not be 
fixed to Th0, rather it will be adjusted and maintained on a small 
value that is suitable to a specific problem based on nacp, the 
number of accepted designs in the inner loop, and nimp, the 
number of better designs found in the inner loop. In the 
exploration process, Th is increased and decreased in a 
relatively large range based on nacp. Based on our tests, the 
following proposed schedules for controlling Th is found to 
work very well for different experimental design problems:  

1. In the improving process, Th is maintained on a small 
value so that only better design or slightly worse design will be 
accepted. Specifically, Th will be decreased if the acceptance 
ratio nacpt is larger than a small percentage (e.g., 0.1) of the 
number of total designs J and nimp is less than nacpt; Th will be 
increased otherwise. The following equations are used in our 
algorithm to decrease and increase Th, respectively, TT 1' α=  
and 1/' αTT = , where 10 1 <<α . The setting of 1α = 0.8 
appears to work well in all tests.. 

2. In the exploration process, Th will fluctuate within a 
range based on the value of nacpt.  If nacpt is less than a small 
percentage (e.g., 0.1) of J, Th will be rapidly increased until 
nacpt is larger than a large percentage (e.g. 0.8) of J. If this 
happens, Th will be slowly decreased until nacpt is less than the 
small percentage. This process will be repeated until an 
improved design is found. The following equations are used to 
decrease and increase Th, respectively, TT 2' α=  and 3/' αTT = , 
where 10 23 <<< αα . Based on our experience, we set 2α = 
0.9 and 3α = 0.7. Th is increased rapidly (so that more worse 
designs could be accepted) to help moving away from a locally 
optimal design. Th is decreased slowly for searching better 
designs after moving away from the local optimal design.   

 
3.2. Efficient Algorithms for Evaluating Optimality Criteria  

As an optimality criterion is repeatedly evaluated 
whenever a new design of experiments is constructed, the 
efficiency of this evaluation becomes critical for optimizing the 
design of experiment within a reasonable time frame. In this 
work, we propose efficient evaluation methods that take into 
account the feature of our updating operation, i.e., when using 
columnwise element-exchanges for generating new designs, 
only two elements in the design matrix are involved each time.  
The evaluations of optimal criteria, such as pφ  criterion, the 
entropy criterion, and the CL2 criterion, involve different types 
of matrices (e.g., the inter-distance matrix D, the correlation 
matrix R, and the discrepancy matrix C, respectively).  Re-
evaluating all the elements in the matrices each time is not 
affordable, especially if the matrix size is large (determined by 
the number of experiments and number of factors).  Complete 
descriptions of our algorithms for the aforementioned criteria 
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can be found in Jin (2003).  Illustration is only provided here 
for the algorithm associated with the pφ  criterion.  The 
computational savings for all algorithms will be summarized. 

The re-evaluation of φp based on Eq. 4 includes three parts, 
i.e., the evaluation of all the inter-site distances, the sorting of 
those inter-site distances to obtain a distance list and index list, 
and the evaluation of φp. The evaluation of all the inter-site 
distances will take O(mn2), the sorting will take O(n2log2(n)) 
(c.f. Press, et al, 1997), and the evaluation of  φp will take 
O(s2log2(p)) (since p is an integer, p-powers can be computed 
by repeated multiplications). In total, the computational 
complexity will be O(mn2)+O(n2log2(n))+O(s2log2(p)). 
Therefore, re-evaluating φp will be very time-consuming.  

Before introducing the new algorithm, a new equation of φp 
is first provided, which helps develop an efficient evaluation 
algorithm by avoiding the sorting required by Eq. 4. Let 

nnijd ×= ][D be a symmetric matrix, whose elements are the 
inter-site distances of the current design X, the new equation, 
called p-norm form here, is expressed by: 
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The equivalence between this form and Eq. 4 can be easily 
proved, which is omitted here.  

Our new algorithm takes into account the fact that after an 
exchange ( kiki xx

21
↔ ), only elements in rows i1 and i2 and 

columns i1 and i2 are changed in D matrix. For any 
21,and1 iijnj ≠≤≤ , let:  
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With the above representation, the computational 
complexity of updating the elements in D matrix is O(n). The 
new pφ  can be computed by: 
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of which the computational complexity is O(n log2(p)). The 
total computational complexity of the new algorithm is 
O(n)+O(n log2(p)).  This results in significant reduction of 
computation compared to re-evaluating φp.

 The new algorithm for evaluating the entropy criterion 
involves a new Cholesky decomposition algorithm, while that 
for evaluating the CL2 criterion employs a similar idea as that 
for the pφ criterion.  A comparison of the computational 
complexity of totally re-evaluating all elements in matrices and 
those of our new algorithms are summarized in Table 1. From 
the table, we find that for the φp criterion and the CL2 criterion, 
with the new algorithms, the efficiency can be significantly 
improved.  The new computational complexity is close to O(n) 
in both cases. However, for the entropy criterion, because of the 

involvement of matrix determinant calculation, the efficiency is 
not improved dramatically (complexity larger than O(n2)). 

 
Table 1. Computational Complexity of Criterion Evaluation 

 φφφφp CL2 Entropy 
Re-evaluating 
Algorithms 

O(mn2)+O(n2log2(n)) 
+O(s2log2(p)) O(mn2) O(n3)+O(mn2) 

New 
Algorithms O(n)+O(n log2(p)) O(n) O(n2)+O(n) ~ O(n3)+O(n)

 
Table 2 provides illustrative results on the efficiency. The 

ratio between the time (Tr) needed to totally re-evaluating all 
matrix elements and the time (Tn) needed by our new algorithm 
shows the improvement.  The empirical results match with our 
analytical examinations earlier.  We also found that the larger 
the size of an experimental design, the more savings the 
algorithm will make.  Compared to other two algorithms, the 
entropy criterion is much less efficient. It is also observed that 
with the new algorithms, the computing time for the φp criterion 
is 2.3~3.0 times as much as that for the CL2 criterion.  

 
Table 2. Computing Time (secs) of Criteria for 500,000 LHDs 

Tr stands for the time needed to totally re-evaluating the criterion value of a 
LHD for 500,000 times. Tn stands for the time needed to construct 500,000 
different LHDs by element-exchanges and compute their criterion values by the 
proposed criterion-evaluation algorithm in ESE. 

φφφφp  
(p = 50, t =1) 

 
CL2 

Entropy  
(θθθθ = 5, t =2)   

Tr Tn Trt/Tn Tr Tn Trt/Tn Tr Tn Trt/Tn

12××××4 LHDs 12.2 5.5 2.2 10.7 2.4 4.5 16.6 14.2 1.2 
25××××4 LHDs 53.0 10.1 5.2 41.5 3.4 12.1 75.3 39.8 1.9 
50××××5 LHDs 239 19.8 12.1 197 6.5 30.3 347 167 2.1 
100××××10 LHDs 1378 45.2 30.5 1305 15.9 82.1 2116 1012 2.1 

 
While the construction algorithm proposed is suitable for 

optimizing designs with the balance property, it can also be 
extended to optimizing designs with other special structural 
properties.  For instance, it can be extended to obtain optimal 
OAs or OLs and maintain the orthogonality property.  In that 
case, new updating operations will be used to replace simple 
element-exchanges in a column so as to retain the orthogonality 
property required by OAs or OLs.  The description of this 
extension can be found in Jin, 2003.   

4. TEST RESULTS AND COMPARATIVE STUDY 
Our proposed algorithm can be used for optimizing various 

classes of designs of experiments, including but not limited to 
LHDs, general balanced designs, OAs, and OLs. Here we 
provide two examples of optimal designs based on the CL2 
criterion. The first one, as shown in Fig. 3, is an optimal 
balanced design, in which the factors 1~4 have 16 levels (equal 
to number of runs) and factors 5 and 6 have 4 levels. Fig. 5 
shows its projection onto 4th (16 levels) and 5th (4 levels) 
factors. From the figure, we can find that the balance property 
is retained, i.e., 4th factor is explored once in each of the 16 bins 
and 5th factor is explored 4 times in each of the 4 bins. The 
second example, as shown in Fig. 4, is an optimal OL16(45; 2). 
Fig. 6 shows the projection of the optimal OL16(45) onto the 
subspace of 4th and 5th factors. Factors 4 and 5 get explored 
once in each of 4×4 squares and each of them individually gets 
explored once in each of 16 equal bins (not shown in the 
figure).  
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Figure 3. Optimal U16(16442)  
Based on the CL2 Criterion  

(CL2 = 0.03652) 

Figure 4.  Optimal OL16(45; 2) 
 Based on   the CL2 Criterion 

(CL2 =  0.01364) 
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Figure 5. Projection of the 
Optimal U16(16442) onto the 

Subspace of 4th and 5th Factors 

Figure 6.  Projection of the 
Optimal OL16(45; 2)onto the 

Subspace of 4th and 5th  Factors 
 

In the rest of this section, we will demonstrate the 
performance and efficiency of the proposed algorithm by 
comparing it with the existing algorithms. The comparative 
study below will focus on optimal LHDs, which have been 
widely applied and studied in the literature. In Section 4.1, we 
will compare the computing time of our method with the CP 
algorithm based on the results presented in the literature. This is 
followed in Section 4.2 with a more comprehensive comparison 
of performance and efficiency between our proposed ECE 
algorithm, and the existing CP and the SA algorithms.   In 
Section 4.3, we verify the quality of the optimal designs of 
experiments obtained by our method by comparing the 
achieved optimality criterion with that from random designs. 

 
4.1. A Preliminary Comparison – Savings in Computing 
Time 

In the following, an illustrative comparison between our 
proposed ESE algorithm and the CP algorithm presented in Ye, 
et al, 2000 is provided to show the significant savings achieved 
by our method.  It should be noted that besides using the ESE 
algorithm, our method also employs efficient algorithms for 
evaluating optimality criteria; the savings in computing time is 
a combination of both.  The comparison is for optimal 25×4 
LHDs constructed based on the φp criterion (p = 50 and t = 1). 
It should be noted that even though Ye, et al used the φp 
criterion (with the same parameter settings as in our tests) as 
the optimality criterion in constructing optimal LHDs, their 
results were reported in the form of (maximizing) the minimum 
L1 distance (the larger the better), which, as discussed before, is 
strongly related to but not totally in accord with the φp value 
(the smaller the better).  To be consistent, the results of our 
proposed ESE are also in the form of minimum L1 distance in 
Table 3. 

 

Table 3. ESE vs. CP for Constructing Optimal 25××××4 LHDs Based on 
φφφφp Criterion (p = 50 and t = 1) 

Ne stands for number of exchanges (shown in thousands). The results for CP 
are from Ye, et al (2000, based on Sun SPARC 20 Workstation). In the CP test, 
100 cycles (shown in the parentheses following the numbers of exchanges) are 
used. ESE is tested on a PC with a Pentium III 650 MHZ CPU.  

 Ne  in Thous Min L1 Distance Computing Time
CP 2242(100) 0.8750 10.63 hr 
ESE 120 0.9167 2.5 sec 

 
In the work of Ye, et al, the optimization process was 

repeated for 100 cycles starting from different random LHDs 
and the design with the largest minimum L1 distance of the 100 
constructed optimal designs was reported as the final optimal 
design.  The number of exchanges or computing time of CP is 
the total number or time used in the 100 cycles. From the 
results, it is found that the designs constructed by our ESE with 
less than 2.5 seconds is better than those constructed by CP 
with around 10.63 hours. In fact, ESE is tested for many times 
and the minimum distances are consistently larger than or equal 
to 0.9167. The saving of computing time is dramatic even if the 
difference between the computing platforms is considered. As 
introduced earlier, such a good efficiency is achieved by: 

��Improving the efficiency of criterion evaluation (5 times 
faster than totally re-evaluating for the example test case; more 
significant improvement for larger size designs, see Table 2);  

��Using fewer exchanges with ESE  to search an optimal 
design (120,000 with ESE Vs 2,241,900 with CP). 

The test results match with our theoretical examinations of 
the efficiency of the algorithms for criterion evaluations shown 
in Section 3.2. The following comparative study is to further 
demonstrate the performance of ESE algorithm in saving the 
numbers of exchanges. 

 
4.2. A Further Comparison of Performance and Efficiency 

We tested two popular criteria, i.e., the φp criterion (p = 50 
and t = 1) and the CL2 criterion in our comparative study. For 
SA, the tests are limited to the φp criterion since the parameter 
settings of SA were originally provided by Morris and Mitchell 
(1995) to suit the φp criterion. For CP, both criteria are tested 
since there are no special parameters to be set. Due to the space 
limitation, we only discuss the results from using the φp 
criterion here.    

Our implementations of CP and SA in the test are based on 
the algorithms proposed in Li and Wu (1997) and in Morris and 
Mitchell (1995), respectively (see the description in Section 
2.3). One major change in our implementations of CP and SA is 
that our proposed algorithms for criterion evaluation described 
in Section 3.2 are used instead of reevaluating all matrix 
elements as currently being done in the literature.  Thus, our 
implementations run much faster than the original 
implementations in the literature. The implementation of SA, 
including parameter settings, is the same as Morris and 
Mitchell’s. Even though we attempt to reproduce the original 
implementations of CP and SA in the literature, the results from 
the two implementations may not be exactly the same as in the 
literature.  

The tests are conducted on two sets of LHDs of relatively 
small sizes, i.e., 12×4 and 25×4, and two sets of LHDs of 
relatively large sizes, i.e., 50×5 and 100×10. As randomness is 
involved in all constructing algorithms, we repeat the same test 
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for 100 times starting from different initial LHDs. On each set 
of LHDs, two types of comparison are made, i.e., 

Type-I: Comparing the performance of ESE with that of 
SA and CP in terms of the average of criterion values of 
optimal designs with nearly the same numbers of exchanges. 

Type-II: Comparing the efficiency of ESE with that of SA 
and CP in terms of numbers of exchanges needed for ESE to 
achieve optimal designs with the average of criterion values 
slightly better than that of SA or CP. 

In both types of comparison, t-test is used to statistically 
compare the average criterion value of the optimal designs 
generated by ESE with those generated by SA or CP. The p-
value is used to measure the level at which the observed 
difference (< 0) between the average criterion values is 
statistically significant. The smaller the p-values are, the more 
statistical significance it has. While the standard in scientific 
research is that the p-value should be below 5%, here we use a 
much tighter standard that the p-value should be smaller than 
0.001%. For type-I comparison, this standard is not that critical 
since virtually all the p-values in the comparison are much 
smaller than 0.001%; for type-II comparison, however, this 
standard is used to judge whether optimal designs generated by 
ESE are close to but still statistically significantly better than 
those generated by SA or CP. Corresponding to two types of 
comparisons, two groups of tests for ESE are performed. For 
type-I comparison, ESE is terminated at a number of exchanges 
close to that of SA or CP and this group of tests for ESE is 
denoted as ESE (I); for type-II comparison, ESE is terminated 
when p-values are smaller than 0.001%, and this group of tests 
for ESE is denoted as ESE (II). We have also used permutation 
test (c.f., Good, 2000) for the comparison, which is a 
hypothesis test based on re-sampling from randomly permuted 
sample data. Unlike t-test, permutation test does not assume a 
normal distribution. The p-values achieved from permutation 
test (not presented here) are similar to those from t-test. 

 
4.2.1. Results of Small Sizes of Designs  

For small-sized LHDs, relatively large number of 
exchanges is affordable. For example, with 2,865,600 
exchanges, it takes ESE about 57 seconds to construct an 
optimal 25×4 LHDs based on the φp criterion. The tests for 
small-sized problems are therefore focused on the capability of 
moving away from locally optimal designs and finding better 
experimental designs given a large number of exchanges.  

The results of using the φp criterion are shown in Table 4. 
For each algorithm, two sets of tests with different numbers of 
exchanges are conducted.  For SA, the two sets of tests 
correspond to two different values for cooling factor α 
suggested by Morris and Mitchell (1995), i.e., α = 0.90 (faster 
cooling) and 0.95 (slower cooling), respectively. In a particular 
set of tests, the numbers of exchanges of SA for constructing 
optimal designs will differ test by test. For instance, for 12×4 
LHD and α = 0.95, the numbers of exchanges could be 
anywhere between 362,384 and 1,192,482. The numbers of 
exchanges of SA shown in the table are the average numbers. 
CP is terminated at a cycle number Ns, which is selected so that 
the average number of exchanges is close to that of SA.  The 
numbers of exchanges shown are also the average of 100 tests. 
The results of SA are also used to determine when to stop ESE. 

 

Table 4. Test Results of optimal 12××××4 LHDs and 25××××4 LHDs based 
on φφφφp criterion (p =50 and t =1) 

For SA, Sets 1 &2 correspond to α = 0.90 and α = 0.95, respectively. Ne  
(shown in thousands) stands for the average numbers of exchanges of 100 tests 
in each set of tests. For CP, cycle numbers Ns are given in the parentheses 
following the average numbers of exchanges.  

Set 1 Set 2  
φφφφp criterion Ne in Thous Mean(STD) Ne in Thous Mean(STD) 

SA 289 0.8569(0.0131) 523 0.8505(0.0133) 
CP 292(154) 0.8581(0.0082) 530(280) 0.8546(0.0096) 

ESE (I) 286 0.8384(0.0057) 520 0.8362(0.0041) 

12××××4 
LHDs
 

ESE (II) 96 0.8483(0.0114) 174 0.8426(0.0084) 
SA 1416 1.1205(0.0101) 2724 1.1149(0.0103) 
CP 1442(65) 1.1495(0.0078) 2744(124) 1.1455(0.0070) 

ESE (I) 1416 1.1051(0.0060) 2724 1.0989(0.0051) 

25××××4 
LHDs
 

ESE (II) 470 1.1150(0.0072) 840 1.1072(0.0072) 
 
For type-I comparison, error-bar plots (Figs. 7 and 8) are 

used to display the mean and variability of achieved φp values 
from 100 tests. The error bars (thick vertical lines) are each 
drawn a distance of one STD above and below the mean value. 
For each algorithm, a mean-line links the middles (i.e., the 
means) of error-bars. The dash error-bars and mean-lines are 
for the results of SA. From the figures, it is found that with 
similar number of exchanges, on average the proposed ESE 
always achieves better designs than both SA and CP with 
respect to the φp criterion.  This is also confirmed statistically 
by the p-values in t-tests, which are all smaller than 1.0e-15. 
Furthermore, ESE is more efficient than both SA and CP. Table 
4 shows that to obtain a statistically significantly better design 
for both 12×4 and 25×4 LHDs, ESE needs less than 1/3 of 
exchanges used in SA and in CP.   
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Figure 7. Type-I Comparison 
for 12 ××××4 LHDs (φφφφp criterion) 

Figure 8. Type-I Comparison 
for 25 ××××4 LHDs (φφφφp criterion) 

 
When using the CL2 criterion, it is found that ESE uses 

around 1/3 ~ 1/2 exchanges used in CP for 12×4 LHDs and 
around 1/6 ~ 1/2 of exchanges used in CP for 25×4 LHDs to 
achieve statistically significantly better designs. 

 
4.2.2. Results for Large Sizes of Designs 

The computational cost of constructing an optimal design 
of large sizes is much larger than that of small sizes. For large-
size designs, our goal is to find a good design using limited 
computational resource. Our comparison focuses on how 
efficient our algorithm is compared to others by using the same 
amount of reasonable numbers of exchanges, which are 
considered as small in relative to the size of the LHDs. 

For large-sized designs, SA in general converges much 
more slowly than CP and ESE. Therefore with the numbers of 
exchanges that are small relative to the size of design, the SA 
search process will not be able converge before the maximum 
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number of exchanges is reached.  As the result, the design 
generated by SA could be much inferior to those generated by 
CP and ESE. For instance, for 50×5 LHDs based on the φp 
criterion, with around 1,520,000 exchanges, the average 
criterion value of SA (α = 0.9) is 1.4658 in comparison with 
0.9875 for ESE and 1.0322 for CP.  Therefore for large 
problems, SA may not be suitable since it needs excessive 
numbers of exchanges.  Our test for large-sized designs will 
only focus on CP and ESE.  

CP provides baselines for determining when to stop ESE in 
both types of comparisons. For large-sized problems, the 
computational cost could be too high for CP to even finish a 
single cycle. For instance, a single cycle of CP for 100×10 
LHD with φp criterion could take 31,482,000 exchanges (2,758 
seconds). Therefore, the tests of CP for large-sized LHDs have 
been restricted to at most several cycles for 50×5 LHDs and 
one cycle for 100×10 LHDs. Table 5 shows the maximum 
numbers of exchanges and the computing time. From the table 
we can find that the computing time has been limited to merely 
several minutes (if not seconds). 

 
Table 5. Maximum Number of exchanges and Computing Time for 

Constructing Optimal LHDs 
Ne stands for number of exchanges. Tc stands for computing time. The data 
shown are for ESE. The data for CP are similar.  

 φφφφp CL2 
 Max Ne××××1000 Max  Tc Max Ne××××1000 Max  Tc 
50××××5 LHDs 1945 77 sec 2960 35 sec 
100××××10 LHDs 2500 219 sec 7685 198 sec 

 
As shown in Table 6, for each algorithm, three sets of tests 

with different numbers of exchanges are performed. For 50×5 
LHDs, the numbers of exchanges of the first set of tests are not 
sufficient to finish one cycle; the second set of tests involves 
exactly one cycle and the numbers of exchanges are the average 
of the 100 tests; likewise, the third set of tests involves exactly 
5 cycles. For 100×10 LHDs, even though large numbers of 
exchanges are used for CP in all three sets of tests, they are not 
sufficient to finish the first cycle.  

 
Table 6. Test Results of optimal 50××××5 LHDs and 100××××10 LHDs 

based on φφφφp criterion (p =50, t =1) 
Ne  stands for the average numbers of exchanges.  For CP, the cycle numbers 
are provided in the parentheses following the numbers of exchanges. If there 
are no cycle numbers marked, it means that CP is stopped within the first cycle 

Set 1 Set 2 Set 3  
φφφφp criterion Ne in 

Thous 
Mean 
(STD) 

Ne in 
Thous 

Mean 
(STD) 

Ne in 
Thous 

Mean 
(STD) 

CP 61 1.1564 
(0.0121) 

404 
 (1) 

1.0420 
(0.0097) 

1948 
(5) 

1.0311 
(0.0068) 

ESE (I) 60 1.0486 
(0.0072) 400 1.0076 

(0.0059) 1945 0.9850 
(0.0038) 

50××××5 
LHDs 
 

ESE (II) 10 1.1264 
(0.0099) 80 1.0348 

(0.0069) 110 1.0248 
(0.0063) 

CP 297 0.5381 
(0.0044) 545 0.5059 

(0.0024) 2525 0.4660 
(0.0014) 

ESE (I) 280 0.4562 
(0.0012) 500 0.4525 

(0.0014) 2500 0.4440 
(0.0010) 

100××××10 
LHDs 
 

ESE (II) 10 0.5214 
(0.0031) 20 0.4996 

(0.0025) 140 0.4634 
(0.0015) 

 

The means and variability of the achieved φp values for 
50×5 LHDs and 100×10 are shown in Figs. 9 and 10 for types-I 
comparison. From the figures, it is found that ESE consistently 
outperforms CP, which is also confirmed by t-tests (p-values 
are all smaller than 1.0e-15). From Table 6, it is observed that 

ESE is much more efficient than CP.  To reach statistically 
significantly better designs than CP, ESE needs only around 
1/17~ 1/5 of exchanges used in CP for 50×5 LHDs and 1/29 ~ 
1/18 of exchanges used in CP for 100×10 LHDs.  
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Figure 9. Type-I Comparison 
for 50 ××××5 LHDs (φφφφp criterion) 

Figure 10. Type-I Comparison 
for 100 ××××10 LHDs(φφφφp criterion) 

 
Similar tests to the above have been carried out for the CL2 

criterion.  It is found that ESE consistently outperforms CP, 
which is confirmed by t-tests (p-values are all smaller than 
1.0e-15). It is observed that ESE is much more efficient than 
CP.  To reach statistically significantly better designs than CP, 
ESE needs only around 1/23 ~ 1/4 of exchanges used in CP for 
50×5 LHDs and 1/33 ~ 1/10 of exchanges used in CP for 
100×10 LHDs.  

 
4.3    Verifications by Comparing with Random Designs 

For large-sized designs, we have used small number of 
exchanges in relative to the size of designs. As the global 
optimal design is never known, one way to assess the quality of 
these optimal designs are to estimate the probability of a 
random design being better than an optimal design, i.e.,  
        )()( optopt tXPtF ≤= , (15) 

where X, a random variable, stands for criterion values of 
random designs and topt is the criterion value of an optimal 
design (here the mean of the criterion values of a set of optimal 
designs are used for topt). If the probability is trivial, we could 
consider the optimal design has a significantly low criterion 
value. This evaluation depends on the cumulative distribution 
function (CDF) F(x) of the criterion values of random designs, 
which generally can only be estimated by Monte-Carlo 
methods.  

For 50×5 LHDs, 20,000,000 random designs are generated 
and their φp and CL2 values are computed. It is found that the 
average criterion value (e.g., 0.9850 for φp, as shown in set 3 in 
Table 6) of the optimal designs by ESE is far beyond the left 
tails of the empirical cumulative distribution curves. To 
estimate the probability in Eq. 15, an approximation curve has 
been used to extend the left tail of the empirical cumulative 
distribution curve.  It is obtained that for the φp criterion, the 
probability )( optp tP <φ  is roughly in 10-15 magnitude; for the 
CL2 criterion, the probability )( 2 opttCLP <  is roughly in 10-19 
magnitude. Similar observations can also be obtained for 
100×10 LHDs. We then can conclude that for large-sized 
LHDs, those optimal designs constructed by ESE generally 
have significantly low φp values or CL2 values. 
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5. SUMMARY 
In this study, we develop a very efficient and flexible 

algorithm for constructing optimal experimental designs.  Our 
method includes two major elements: the use of ESE algorithm 
for controlling the search process and the employment of 
efficient algorithms for evaluating the optimality criteria.  Our 
proposed algorithm has shown great efficiency compared to 
some algorithms in the literature. Specifically, it has cut the 
computation time from hours to minutes and seconds.  In 
comparison, we have the following observations: 

1. With the same number of exchanges, the optimal 
designs generated by ESE is generally better than those 
generated by SA and CP. 

2. To obtain a design statistically significantly better than 
those generated by SA and CP, ESE needs far less number of 
exchanges (typically around 1/6 ~ 1/2 of exchanges needed by 
SA or CP for small-sized designs and 1/33~ 1/4 of exchanges 
needed by CP for large-sized designs).  

3. For small-size problems (a relatively large number of 
exchanges are affordable), SA often has better performance 
than CP. However, for large-size problems, SA may converge 
very slowly and require a tremendous number of exchanges.  

While our focus in this paper is on optimizing LHDs, the 
ESE algorithm can be used to optimize other classes of designs 
such as OAs and OLs. Furthermore, while the algorithm works 
on the φp criterion, the entropy criterion, and the CL2 criterion, 
it can be conveniently extended to other optimality criteria.  

While there are many optimality criteria available in the 
literature, the comparison between different design criteria is 
certainly one of the most important problems in the field of 
design of computer experiments and deserves a thorough future 
investigation. The optimality criteria and the constructing-
algorithm introduced in this paper are mainly focused on global 
metamodeling assuming anywhere in the design space is 
equally important. Another interesting issue is the comparison 
between different classes of designs. We compare the 
properties of optimal OLs (strength 2) and optimal LHDs. 
While detailed results are omitted, it is found that optimal OLs 
always have better two-dimensional projective properties than 
optimal LHDs. Such improvement, however, may come with 
small degradation of the full-dimensional projective properties.  
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