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ABSTRACT 

Even though model-based simulations are widely used in 
engineering design, it remains a challenge to validate models 
and assess the risks and uncertainties associated with the use of 
predictive models for design decision making.  In most of the 
existing work, model validation is viewed as verifying the 
model accuracy, measured by the agreement between 
computational and experimental results.  However, from the 
design perspective, a good model is considered as the one that 
can provide the discrimination (good resolution) between 
design candidates. In this work, a Bayesian approach is 
presented to assess the uncertainty in model prediction by 
combining data from both physical experiments and the 
computer model.  Based on the uncertainty quantification of 
model prediction, some design-oriented model validation 
metrics are further developed to guide designers for achieving 
high confidence of using predictive models in making a specific 
design decision.  We demonstrate that the Bayesian approach 
provides a flexible framework for drawing inferences for 
predictions in the intended but may be untested design domain, 
where design settings of physical experiments and the computer 
model may or may not overlap. The implications of the 
proposed validation metrics are studied, and their potential 
roles in a model validation procedure are highlighted. 
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NOMENCLATURE 

( )eY x   physical experimental observation 

( )ε x   experimental error, assumed as Normal  

( )rY x  true response outcome  
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( )mY x  outcome  of computer model 

( )δ x  the bias (or error) of computer model  

( )f x  design objective function 

x  x
1( )T

px x= , ,"  , design in a p-dimensional space 

eD  
1{ }

ee nD = , ,x x" , for physical experiments 

en  size of 
eD , the number of physical experiments 

mD  1{ }
mnmD = , ,′ ′x x" , for computer experiments 

mn  size of 
mD , the number of computer experiments 

my  1( ( ) ( ))
m

m m m T
ny y= , ,′ ′y x x" , the deterministic 

model outputs 
2
εσ  variance parameter of ( )ε x  

2
mσ , 2

δσ  
variance parameter of the prior Gaussian process 

( )mY x and ( )δ x  

mφ ,
δφ  correlation parameter of the prior Gaussian 

process ( )mY x and ( )δ x  

τ  ratio of 2
εσ  to 2

δσ  

e mnδ | , ,
m mn |

 degree of freedom of t distribution 

( )e mδµ | , x , ( )m mµ | x  noncentrality parameter of t distribution 
2 ( )e mδσ | , x , 2 ( )m mσ | x  scale parameter of t distribution 

ijP  probability for pair-wise comparison 

( )Multip
D iM x  ‘multiplicative’ design validation metric 

( )Average
D iM x  ‘average (additive)’ design validation metric 

( )Worstcase
D iM x

 
‘worst-case’ design validation metric 

DM  general term of design validation metric 

k   number of design candidates space 
  
1  INTRODUCTION 

With rapid increase of computational capability, modeling 
and simulation based design has been increasingly used for 
designing new engineering systems.  However, it remains a 
challenge on assessing the risks and uncertainties associated 
with the use of predictive models in engineering design.  Even 
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though there is growing interest from both government and 
industries in developing fundamental concepts and terminology 
for model validation (DoD; Ang et al. 1996, Doebling, et al. 
2002; Oberkampf et al, 2003; Cafeo and Thacker 2004; Gu and 
Yang, 2003), model validity and model validation are poorly 
understood in engineering design.  In most of the existing work, 
validation is viewed as verifying the model accuracy, i.e., a 
measure of the agreement between computational results and 
experimental results.  Model validation has been primarily 
carried out from the perspective of model builders (or analysts) 
but not from that of designers (model users).   

Model validation in practice mirrors the status of its 
limited development in research.  In industry, product design 
has become a systems engineering activity that involves the 
integration of various analysis models, often owned by different 
disciplines or even different vendors. In current practice, 
validation is restricted to providing maturity scores by 
individual model builders through physical tests.  Often these 
scores are obtained based on a very limited number of tests 
without considering the potential design space from the system 
perspective and the various sources of uncertainties.  In 
summary, the existing approaches for validating analysis 
models cannot be directly used for validating design models in 
engineering decision making. 

In the engineering design research community, special 
attentions have been given to how models and information are 
used in design decision making (McAdams and Dym, 2004).  
Preliminary efforts have been made on characterizing and 
assessing the validity of behavior models and their predictions 
in design (Malak and Paredis, 2004).  Hazelrigg (2003) is the 
first one to have brought up the notion that the validation of a 
predictive model can be accomplished only in the context of a 
specific decision, and only in the context of subjective input 
from the decision maker, including preferences.   As noted by 
Hazelrigg (2003), what really matters to designers is whether a 
model generates design choices whose real outcomes are better 
than other design choices.  The concept is illustrated in Fig. 1.1.  
Both design alternatives A and B have prediction uncertainty 
associated with their outcomes.  For making the right design 
choice (right means that the real outcome of the selected choice 
is better than those of the others), a good model is the one that 
can provide the discrimination (good resolution) between the 
two alternatives, e.g., ( )Af x and ( )Bf x , where ( )Af x  and ( )Bf x  

stand for the design objective function of alternatives 
Ax  and 

Bx , respectively.  From the probabilistic point of view, to 

identify the model validity, it is important to have the capability 
of assessing the probability 

ABP  of design alternative i to 

produce an outcome that is preferred to or indifferent to another 
alternative j, i.e., ( )P ( ) ( )AB A BP f= <x x , assuming smaller-the-

better scenario.  

 

Figure 1.1 Design resolution 
Here we differentiate a design objective ( )f x  from y(x), 

which stands for a single or multiple responses from computer 
model(s).  To quantify the uncertainty of ( )f x , tatistical 
inference techniques must be developed to quantify the 
uncertainty associated with the prediction of ( )ry x  based on the 

results from both models and physical experiments.  As 
experiments are seldom available for a new design, this 
requires merging model and test data from a variety of single 
and multiple phenomena into an inference about prediction at 
the intended design. This is the “inference bridge” in Fig. 1.2. 
The greater the distance, the larger the prediction uncertainty 
normally is.  

 

 
Figure 1.2 Inferring predictive capability 

 
Although the need for validating models from the 

perspective of engineering design has been brought up in the 
existing model validation work, few have developed 
quantitative means to define and to assess model validity for 
specific decisions. In author’s earlier work, an approach was 
developed to provide stochastic assessment of the validity of a 
model (Chen et al. 2004; Buranathiti et al. 2004).  However, the 
approach is more useful for rejecting (invalidating) a model 
rather than accepting (validating) a model.  In recent work of 
Mahadevan and Rebba 2005, a Bayes network approach is 
proposed for validating the reliability assessment made by 
computational models in design.  Validation is treated as a 
hypothesis testing problem, with which prediction uncertainty 
cannot be quantified.  Again, the emphasis in on validating the 
modeling accuracy at tested design points, but not in the 
context of a new design.  In order to accept a design solution 
with good confidence, a design validation metric needs to be 
developed to provide a confidence measure of a candidate 
design being better than other design choices. 

 
In this paper, we present a model validation approach that 

provides quantitative assessments of uncertainty in using 
predictive models in engineering design and further develop 
some validation metrics that guide designers for achieving high 
confidence of using predictive models in design decision 
making. A Bayesian procedure is presented to combine the data 
from physical experiments and computer models for predictive 
modeling.  The Bayesian approach provides a framework for 
drawing inferences for predictions in the intended but untested 
design domain.  The approach is generic enough to handle 
cases where design settings of physical experiments and the 
computer model may or may not overlap.  When limited 
amount of physical data is available, the approach is capable of 
taking into account scientific knowledge and past information 

( )Af x

Probability density 
 

( )Bf x

Design objective 

Intended  
Design Use Test 

Region  
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in the form of prior distributions of model parameters.  With 
the obtained uncertainty quantification of prediction of ( )ry x  

and thus the uncertainty quantification of design objective 
( )f x , we further develop validation metrics to provide 

confidence measures of accepting a candidate design solution.  
The implications of using such validation metrics are examined. 

2. BACKGROUND AND GENERAL APPROACHES 

2.1 Uncertainties in Model Prediction and the Mathematical 
Framework 
Predicting the amount by which a model output may differ 

from the true value is often complicated by the presence of 
uncertainties and errors from various sources, such as model 
(lack of knowledge), parametric, algorithmic, computational, 
and system variability, as well as testing data that are used to 
compare with the model prediction.  Different ways of 
classifying uncertainties in model prediction are seen in the 
literature (Apostolakis 1994; Trucano, 1998; Hazelrigg, 1999; 
Oberkampf et al., 1999).  Using x to represent design variables 
and y stand for model response, the relationship between the 
experimental observations ( )eY x , the true outcome ( )rY x , and 

the prediction generated by a computer model ( )mY x  can often 
be generalized as follows: 
    ( ) ( ) ( ) ( ) ( ) ( )e r mY Y Yε δ ε= + = + +x x x x x x ,                           (2.1) 

where ( )ε x  is the random variable representing the 
experimental error (relating to both experimental setup and 
measurement) that may depend on x , and ( )δ x  is the error of 

the model , or called the prediction bias, i.e.,  
( ) ( ) ( )r mY Yδ = −x x x ,                                                          (2.2) 

which captures the model inadequacy.   
For the purpose of verifying model accuracy, it is essential 

to estimate the prediction bias ( )δ x  and characterize its 

uncertainty.  If the emphasis is on comparing the outcomes of 
different design candidates, it is then important to estimate the 
true model output ( )rY x  and characterize its uncertainty.  Based 

on Eqn. (2.2), it is noted that estimating the prediction bias 
( )δ x  is an intermediate step for estimating the true model 

output ( )rY x .  Statistical approaches for characterizing the 

probability distributions of these quantities are generally 
divided into two categories, classical statistical (Easterling and 
Berger, 2002) and Bayesian (Bayarri et al., 2002) approaches.  
The fundamental difference between the two is that the former 
draws confidence intervals of prediction based on statistical 
data analysis, while the latter assumes that the model 
parameters themselves are random and follow a prior 
distribution, specified based on model builder/designers’ prior 
knowledge.  The prior distribution will be updated once data is 
available and becomes posterior distribution.  The Bayesian 
approach is preferred to the classical statistical approach when 
it is too expensive to obtain statistically sufficient amount of 
data. 

2.2 General Model Validation Approaches 
The need for relating model validation to the intended 

design use was brought up in the AIAA Guide for the 
Verification and Validation of Computational Fluid Dynamics 
Simulations (1998), where model validation is defined as “a 

process of determining the degree to which a model is an 
accurate representation of the real world from the perspective 
of the intended uses of the model”.    However, existing 
validation metrics are mostly associated with the measures of 
model accuracy based on limited tested points.  Many of 
existing approaches cannot provide stochastic measurements 
with regard to the confidence in using a model.  For instance, 
graphical comparisons through visual inspection of x-y plots, 
scatter plots and contour plots are often subjective and not 
sufficient (Oberkampf and Trucano, 2000). Quantitative 
comparisons (Marczyk et al. 1997) that rely on the measures of 
correlation coefficient and other weighted and non-weighted 
norms to quantify the distance between the two “clouds” cannot 
provide statistical judgment of model validity.  Various 
statistical inference techniques, such as χ2 (Chi-square) test on 
residuals between model and experimental results (Freese, 
1960; Reynolds, 1984; Gregoire and Reynolds, 1988) require 
multiple evaluations of the model and experiments, and many 
statistical assumptions that are difficult to satisfy.  In the area of 
Department of Energy applications, examples of statistical 
analysis of physics models and experiments are given in Hills 
and Trucano (1999) and Easterling and Berger (2002).   

An extensive discussion of validation literature is given by 
Oberkampf and Trucano (2000).  Recent approaches for 
quantitatively comparing computations and experiments can be 
divided into two categories, namely classical frequentist 
approach (Oberkampf and Barone, 2004) and Bayesian 
approach (Kennedy and O’Hagan, 2001; Bayarri et al., 2002; 
Buslik, 1994; Hanson, 1999; Wang, et al., 2006).  Easterling 
and Berger 2002 provide an extensive review on classical 
statistical approaches for model validation and a simple case 
study.  A review of Bayesian approaches can be found in 
Bayarri et al. (2002).  

Oberkampf and Barone (2004) proposed a frequentist 
approach to the comparison of computer outputs and physical 
observations. They first fitted a nonlinear regression model to 
the physical data and then evaluated a validation metric based 
the differences between computer outputs and the fitted curve 
to measure the agreement between computations and 
experiments.  Their approach has several limitations.  First, the 
function form chosen for the nonlinear regression model has a 
large impact on the results obtained.  A complicated nonlinear 
model may require a large amount of data to have a good fit. In 
reality, only few physical observations are often available. 
Second, the calculation of confidence intervals is rather 
complicated with a nonlinear model and often requires 
approximations. Third, their approach treats computer outputs 
and physical observations separately in the sense that the 
computer outputs play no roles in fitting the regression model 
based on the physical data.  Last, with their approach, it is not 
clear how to improve or remedy a predictive model when the 
validation metric suggests a large disagreement between 
computations and experiments.  Even though the idea of 
extending model validation to untested design sites/regions was 
presented, Oberkampf and Barone’s work focuses on validating 
the pure accuracy of models, but not on the validity of using a 
model for making a specific design decision. 

On the contrary, the Bayesian approach (e.g., Kennedy and 
O’Hagan, 2001; Wang et al., 2006) integrates computer outputs 
and physical observations together to improve the predictions 
of computer models using physical observations.  Wang et al. 
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(2006) focus on characterizing the behavior of the prediction 
bias ( )δ x  while the emphasis of Kennedy and O’Hagan’s work 

is on the calibration of computer models based on physical 
observations, but not on model validation. Their assumption on 
the relationship between computer outputs and physical 
observations is similar to the mathematical framework 
considered in this work, with the term ( )mY x  in Eqn. (2.1) 

replaced by ( , )mYρ Θx , where ρ  is an unknown regression 

parameter, and Θ  is the vector of calibration parameters.  Their 
method for model calibration is aimed at finding the value of Θ  
that brings computer outputs as closely as possible to the 
physical observations rather than characterizing the difference 
between the two.  Our focus in this work is on model validation 
with an emphasis on studying the validity of using a model for 
making a specific design decision. 

3. THE BAYESIAN VALIDATION PROCEDURE 
Most research in validating computer models had focused 

on estimating prediction bias and improving accuracy of the 
computer model.  Much less work had been done on 
characterizing prediction uncertainty and prediction bias under 
general situations.  From the engineering design perspective, 
both the predictive capability (accuracy) of a model as well as 
the confidence of using the model in choosing the best design 
candidate are of interest to the designer. The prediction bias 

( )δ x is more closely related to the assessment of model 
accuracy, while the prediction of the true model output ( )rY x  is 

essential to assess the probability that a design alternative will 
produce an outcome that is preferred to or indifferent to other 
alternatives. 

Referring to Eqns. (2.1) and (2.2), the relationship between 
( )eY x  and ( )mY x  is given by ( ) ( ) ( ) ( )e mY Y δ ε= + +x x x x .  Based 

on the experimental data, outputs of the computer model, and 
the specified experimental error ( )ε x , the estimated prediction 

error, ˆ( )δ x , and its probability distribution can be obtained and 
used for validating the accuracy as well as other predictive 
capabilities of the model.  Let ˆ ( )rY x  be the estimator of ( )rY x , 

which can be obtained by ˆˆ ˆ( ) ( ) ( )r mY Y δ= +x x x .  The estimated 

prediction, ˆ ( )rY x , and its associated uncertainty quantification 
will be used to predict ( )f x and quantify its uncertainty. 

In this work, a Bayesian approach is used to provide 
uncertainty quantification of both ˆ( )δ x and ˆ ( )rY x .  For complex 
validation metrics and design decision making, Bayesian 
inferences may be preferred as they require fewer assumptions 
and are more flexible for applications.  In engineering 
applications where it may be too expensive to obtain 
experimental data, Bayesian methods may be preferable as 
additional information can be incorporated through prior 
distributions.  Below, we describe the steps of the Bayesian 
procedure.  Mathematical details of steps (1)~(4) for prediction 
and uncertainty quantification of ˆ ( )mY x  and ˆ( )δ x  can be found 
in Wang et al. (2006).  

(1) Collect both physical and computer model data. 
Both physical observations and model outputs are essential 

to model validation. Physical observations are desired to be as 

many as possible and close to the intended design region. 
Compared to physical observations, model outputs are less 
costly and should be simulated at design settings where the 
physical observations are available and close if not within the 
intended design regions.  Let 

1( )T
px x= , ,x "  be a point in a p -

dimensional design variable space. Let 
1{ }

ee nD = , ,x x"  be the 

design settings for physical experiments, and 

1( ( ) ( ))
e

e e e T
ny y= , ,y x x"  be the corresponding experimental 

observations. Let 1{ }
mnmD = , ,′ ′x x"  be the design settings for 

computer experiments, and 1( ( ) ( ))
m

m m m T
ny y= , ,′ ′y x x"  be the 

corresponding deterministic model outputs. 
eD  and 

mD  may or 

may not overlap.  

(2) Determine priors of Gaussian process parameters.  
Priors should be chosen to reflect existing scientific 

knowledge and past information. For example, Wang et al. 
(2006) assume the following priors for the location and 
variance parameters of Gaussian processes ( )mY x  and )(⋅δ : 

2 2 2

2 2 2 2

( ) ( ) ( )

( ) ( ),
m m m

m m m m m

IG IG IG

N N
δ δ δ ε ε ε

δ δ δ δ δ

σ α γ σ α γ σ α γ

β σ σ β σ σ

, , , , , ,

| , , | ,b V b V

∼ ∼ ∼
∼ ∼

 

where ( )IG α γ,  denotes the inverse gamma distribution.  

(3) Compute the posterior of computer model. 
As indicated in Eqn. (2.2), the posterior of computer model 

( )mY ⋅  is needed in the model validation procedure as an 

intermediate step to obtain the prediction of the true behavior 
( )rY x .  Such information is also needed for calculating the 

posterior of prediction bias ( )δ x  when the design settings of the 

computer experiments do not completely overlap with those of 
physical experiments.  In other words, model outputs at some 
points in 

eD  are not available.  Although the original computer 

model can be used directly to obtain ( )mY ⋅ , computer 

simulations may still be expensive and time-consuming and 
may not be available wherever we need them.  In those cases, 
the posterior means of ( )mY ⋅  at those points are used instead.  

The posterior of ( )mY x  is given by Wang et al. (2006) as a 

noncentral t distribution, with degree of freedom 
m mn |

, 

noncentrality parameter ( )m mµ | x , and scale parameter 2 ( )m mσ | x , 

i.e., 
2( ) ( ( ) ( ))m m

m m m m m m mY T nφ µ σ| | || , , , ,x y x x∼                       (3.1) 

where 
           2m m m mn n α| = + ,                         (3.2) 

1( ) ( ) ( ) ( )T T m
m m m m m m m m m mµ −
| = + − ,x f x A v r x R y F A v                        (3.3) 

112
2 ( ) ( )

( ) (1 )
( ) ( )

T
T

m mm mm
m m

m mm m m m

Q
n

σ
−−⎡ ⎤

⎢ ⎥
⎢ ⎥| ⎢ ⎥
⎢ ⎥| ⎣ ⎦

−⎡ ⎤ ⎡ ⎤
= ⋅ − ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

f x f xV F
x

r x r xF R
                    (3.4) 

2 1 12 ( )m T m T
m m m m m m m m mQ γ − −= + + − ,y R y b V b v A v                 (3.5) 

 1 1 1T
m m m m m
− − −= + ,A F R F V                                                             (3.6) 

1 1T m
m m m m m

− −= + .v F R y V b                                                           (3.7) 

In the above equations, 1( ( ) ( ))
m

T
nm m m= , ,′ ′F f fx x"  is the 

m mn q×  design matrix, 
mR  is the 

m mn n×  correlation 
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(parameterized by 
mφ ) matrix of my , and ( )mr x  is the 

correlation (parameterized by 
mφ ) between ( )mY x  and my . To 

get the marginal posterior of ( )mY x , we need to integrate out 

mφ , which is computationally prohibitive. Alternatively, 
mφ  is 

estimated and treated as its true value. Methods such as the 
Maximum Likelihood Estimates (MLE) (Hastie et al., 2000), 
Markov Chain Monte Carlo (MCMC) (Geyer, 1992), and 
Minimum Mean Squared Error Estimates (MMSE) (Hastie et 
al., 2000), can be used to estimate 

mφ .   

(4) Compute the posterior of prediction bias. 
Similar to ( )mY x  , the posterior of the prediction bias ( )δ x  

is given as (Wang et al., 2006) 
2( ) ( ( ) ( ))e m

e m e m e mT nδ δ δ δδ φ τ µ σ| , | , | ,| , , , , ,x y y x x∼                           (3.8) 

where 2e m en nδ δα| , = + ,                                                             (3.9) 
1( ) ( ) ( )( ) ( )

e e

T T e m
e m n nδ δ δ δ δ δ δ δ δµ τ −
| , = + + − − ,x f x A v r x R I y y F A v    (3.10) 

112
2 ( ) ( )

( ) (1 )
( ) ( )

e

T T

e m
ne m

Q
n

δ δδ δδ
δ

δ δδ δδ

σ
τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

−−

| ,
| ,

−⎡ ⎤ ⎡ ⎤
= ⋅ − ,⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

V Ff x f x
x

F R Ir x r x
         (3.11) 

2 1 12 ( ) ( ) ( )
e e e

e m T e m T
n n nQδ δ δ δ δ δ δ δ δγ τ − −= + − + − + − ,y y R I y y b V b v A v     

(3.12) 
1 1 1( )

e

T
nδ δ δ δ δτ− − −= + + ,A F R I F V                                                (3.13) 

1 1( ) ( )
e e

T e m
n nδ δ δ δ δτ − −= + − + .v F R I y y V b                                     (3.14) 

The denotations used above are analogues to those used in 
Eqns (3.1)~(3.7). We note that, 

δφ  is the correlation parameter 

underlying 
δR and T

δr ; τ  is the ratio of 2
εσ  to 2

δσ , i.e., 
2 2/ε δτ σ σ= , where 2

δσ  denotes the process variance of ( )δ x  

while 2
εσ  denotes the variance of ( )ε x . Unlike ( )δ x  and ( )mY x  

which are assumed to be the Gaussian process with spatial 
correlation structure,  ( )ε x  follows identical independent 

normal distribution at different design site x . The methods used 
to estimating 

δφ  and τ  are similar to that of 
mφ .  

(5) Compute the prediction of the true behavior. 
Combining the results from Steps (3) and (4), the true 

behavior ( )rY x is predicted using the following equations on the 
estimations of the mean and variance,  

 ˆˆ ˆ( ) ( ) ( )r mY Y δ= +x x x ,                                              (3.15) 
2 2ˆˆ ˆ[ ( )] [ ( )] [ ( )] ( ) ( )r m
m m e mVar Y Var Y Var δδ σ σ| | ,= + = +x x x x x .(3.16)   

Under certain assumptions, ˆ ( )mY x  and ˆ( )δ x  are independent. 

The covariance between ˆ ( )r
iY x  and ˆ ( )r

jY x  is given by: 

2 2

ˆ ˆ( ), ( )

ˆ ˆˆ ˆ( ) ( ), ( ) ( )

ˆ ˆˆ ˆ[ ( ), ( )] [ ( ), ( )]

( , ) ( , )

r r
i j

m m
i i j j

m m
j i j

m m i j e m i j

Cov Y Y

Cov Y Y

Cov Y Y B Cov B

δ

δ δ

δ δ

σ σ| | ,

⎡ ⎤⎣ ⎦
⎡ ⎤= + +⎣ ⎦

= +

= +
i

x x

x x x x

x x

x x x x

 .                         (3.17) 

where 
112

2 ( )( )
( , ) ( ( , ) )

( )( )

T
T

m jm i m mm
m m i j m i j

m jm im m m m

Q R
n

σ
−−

|
|

⎡ ⎤ ⎡ ⎤−⎡ ⎤
= ⋅ − ,⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

f xf x V F
x x x x

r xr x F R
               

(3.18) 

112
2 ( )( )

( , ) ( ( , ) ).
( )( )

e

T T
ji

e m i j i j
jnie m

Q R
n

δδ δδδ
δ δ

δδ δδδ

σ
τ

−−

| ,
| ,

⎡ ⎤− ⎡ ⎤⎡ ⎤
= ⋅ − ⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

f xV Ff x
x x x x

r xF R Ir x

        (3.19) 
When 

i j= =x x x , Eqns (3.18) and (3.19) reduce to Eqns (3.4) 

and (3.11); Eqn. (3.17) reduces to Eqn. (3.16).  
In the following section, we present some design validation 

metrics that utilize the information the predicted objective 
function ˆ ( )f x at multiple design sites to select the best design 
candidate under model uncertainty and determine the 
confidence associated with the design decision. 

4. SOME DESIGN VALIDATION METRICS 

Different from the existing validation metrics that assess 
the predictive capability (accuracy) of a model, the design 
validation metrics MD are proposed and examined in this work 
to provide a probabilistic measure of whether a candidate 
design is better than other design choices with respect to a 
particular design objective.  A few metrics that share the similar 
concept are developed to provide a direct measure of how 
reliable is the decision of choosing one design candidate versus 
the other design alternative, therefore to provide the confidence 
associated with a design decision with consideration of model 
uncertainty.  Such metrics are desired to be useful in guiding 
validation activities.  If large uncertainty exists in model 
response y, as well as the design objective f, the achieved MD 
may be too low to meet the design validity requirements, 
forcing designers to add new experiments to reduce model 
uncertainty or to lower the validity requirement. 

Distinguishing neighboring designs in a continuous design 
space with the consideration of model uncertainty is 
mathematically more challenging than separating discrete and 
distinctive design choices. In this work, we start our 
investigation by defining design validity for a finite number (k) 
of design alternatives.  Assuming a smaller design objective 
value is preferred, the following three forms of design 
validation metrics are considered and compared in this work: 
(1) The Multiplicative Metric:  

1 ( 1)

1,

ˆ ˆ( ) { ( ) ( )}
k

k
Multip
D i i j

j j i

M P f f
−

= ≠

⎧ ⎫⎪ ⎪= <⎨ ⎬
⎪ ⎪⎩ ⎭
∏x x x                       (4.1) 

(2) The Average (Additive) Metric:  

1,

1 ˆ ˆ( ) { ( ) ( )}
1

k
Average
D i i j

j j i
M P f f

k = ≠

= <
− ∑x x x                          (4.2) 

(3) The Worst-Case Metric:  

1,..., ,
ˆ ˆ( ) min { ( ) ( )}Worstcase

D i i jj k j i
M P f f

= ≠
= <x x x                           (4.3) 

The proposed ( )D iM x  metrics in Eqns. (4.1) and (4.2) 
provide an averaged measure of the probability that the real 
outcome of 

ix  is better than or indifferent from other design 
choices, representing the confidence of using a predictive 
model to select 

ix  as the optimal design choice.  If ( )D iM x =1, it 
indicates that a designer should have full confidence of taking 
xi as the optimal design.  The ( )D iM x  metric in Eqn. (4.3) 
stands for the worst case of P be used instead of the average.  It 
is our interest in this work to compare these several different 
metrics and determine to what extent these validity assessments 
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are useful to provide design differentiation and to guide model 
validation and design decision making. 

5. EXAMPLE: ENGINE PISTON DESIGN 
We consider the vehicle engine piston design case study 

previously analyzed in Jin et. al (2005). The Noise, Vibration 
and Harshness (NVH) characteristic of the vehicle engine is 
one of the critical elements of customer dissatisfaction. The 
goal of the design is to optimize the geometry of the engine 
piston to obtain the minimal piston slap noise.  To graphically 
illustrate the results and better explain the concepts of the 
proposed method, only one design variable is considered. The 
same approach can be applied to high-dimensional problems.  
Previous results shows that the skirt profile (SP) strongly 
affects the response (slap noise), therefore SP is considered the 
design variable. Skirt profile is represented by characteristic 
ratios of the shape of an engine piston, ranging continuously 
from 1 to 3.  Piston slap noise is the engine noise resulting from 
piston secondary motion, which can be simulated using 
ADAMS/Flex, a finite element based multi-body dynamics 
code.  Thirty-four (34) hypothetical physical experiments are 
considered. Ten (10) computer experiments are conducted 
using the finite element model. It should be pointed out that ten 
computer experiments are sufficient for this one-dimensional 
case, although normally computer outputs are expected to be 
more than physical observations.  All these data are provided in 
Tables 5.1 and 5.2, respectively. Note the design variable x = 
SP has been normalized to the unit interval [0,1].  

Table 5.1 Thirty-four (34) physical experiments 
i 1 2 3 4 5 6 7 

ix eD∈  0.000 0.100 0.200 0.300 0.400 0.500 0.600 

ye(
ix ) 56.332 56.077 55.875 55.542 55.159 54.840 54.682 

i 8 9 10 11 12 13 14 

ix eD∈  0.700 0.800 0.900 1.000 0.500 0.540 0.580 

ye(
ix ) 55.039 55.183 55.774 56.749 54.867 54.646 54.748 

i 15 16 17 18 19 20 21 

ix eD∈  0.620 0.660 0.700 0.740 0.780 0.000 0.070 

ye(
ix ) 54.576 54.614 54.623 54.978 54.923 56.224 56.228 

i 22 23 24 25 26 27 28 

ix eD∈  0.140 0.210 0.280 0.350 0.420 0.490 0.560 

ye(
ix ) 55.767 55.676 55.583 55.214 55.185 54.902 54.894 

i 29 30 31 32 33 34  

ix eD∈  0.630 0.700 0.770 0.840 0.910 0.980  

ye(
ix ) 54.611 54.831 54.947 55.352 55.765 56.560  

 

Table 5.2 Ten (10) computer experiments 
i 1 2 3 4 5 6 7 

ix mD∈  0.050 0.150 0.250 0.350 0.450 0.550 0.650 

ym(
ix ) 56.033 55.584 55.417 55.402 55.278 54.957 54.641 

i 8 9 10     

ix mD∈  0.750 0.850 0.950     

ym(
ix ) 54.656 55.191 56.193     
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Figure 5.1 Physical and computer experiment data (circles: 

physical experiments; triangles: computer experiments) 

5.1 Prediction and uncertainty quantification  
Based on the available data, the Bayesian approach 

described in Section 3 is implemented. For the purpose of 
comparison, the predictive models are established in two 
stages. In the first stage, we only use the first 19 points out of 
34 physical experiment points in Table 5.1. The remaining 14 
points are added in the second stage.  
 
Prediction and uncertainty quantification of ˆ ( )mY x  

From the data shown in Table 5.1, it is found that there is 
no overlap between 

eD  and 
mD , indicating that the settings of 

the design variable (x) for computer outputs are different from 
those for physical experiments. We first calculate the posterior 
of computer model ( )mY x , ( ( ) )m m

mp Y φ| ,x y , through Eqn. (3.1). 

To do this, we need to estimate the correlation parameter 
mφ  

using the eleven available computer experiments. Because of 
the small amount (10) of computer outputs available, leave-
one-out cross validation strategy is used.  Fig. 5.2 shows the 
plot of Rooted Mean Squared Error (RMSE) from the cross-
validation vs. 

mφ  ranging from 0.5 to 50. The minimum RMSE 

is identified  at 
mφ  =2.2.  
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Figure 5.2 RMSE from leave-one-out cross validation vs. 

mφ  

(optimal 
mφ =2.2) 

Given 
mφ , the prediction of ˆ ( )mY x and the associated 95% 

confidence interval are calculated through the posterior of 
( )mY x . From Fig. 5.3, it is noted that ˆ ( )mY x  passes all ten 

computer experiment points and there is no prediction 
uncertainty at each sampling site. Furthermore, owing to the 
smooth behavior of the computer model, ten sampling points 
are sufficient; hence the uncertainty due to the use of Gaussian 
process model replacing the computer model is small across the 
design range.  
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Figure 5.3 Prediction of ˆ ( )mY x and  95% confidence interval  

Prediction and uncertainty quantification of ˆ( )δ x  
From Eqn. (3.8), the prediction of ˆ( )δ x  and the associated 

uncertainty is characterized by the posterior of ( )δ x , given 
δφ  

and τ . Ten-fold cross validation is used to determine the 
optimal values of 

δφ  and τ  in the similar way as in 

estimating
mφ . The results show the optimal setting at τ =2, 

δφ =22. Fig. 5.4 displays the prediction of ˆ( )δ x  and the 95% 

confidence interval. Note the sampling points illustrated in 
Figure 5.4 represent the difference between the physical 
experiment ( )eY x and the model prediction ˆ ( )mY x  (the 
magnitude of the vertical line segments shown in Figure 5.3). 
ˆ( )δ x  has a relatively small variance in the range of [0 6 0.8]∈ . ,x  

compared with the region of [0 6 0.8]∉ . ,x . This can be explained 

by the fact that more physical observations are available for 
[0 6 0.8]∈ . ,x . 
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Figure 5.4 Prediction of ˆ( )δ x and 95% confidence interval 

Prediction and uncertainty quantification of ˆ ( )rY x  
Having obtained the posteriors of ( )mY x  and ( )δ x , the 

prediction of ˆ ( )rY x  is simply the addition of ˆ ( )mY x and ˆ( )δ x . 

The variance of ˆ ( )rY x  is the addition of the two. The prediction 
and 95% confidence interval is illustrated in Fig. 5.5.  In the 
range of [0 6 0.8]∉ . ,x , where less sampling points are available 
for both physical and computer experiments, the uncertainty of 
ˆ ( )rY x is higher accordingly. Comparing Figs. 5.3 and 5.4, it is 

found that the uncertainty of ˆ( )δ x  dominates the uncertainty of 
ˆ ( )rY x . 

Prediction and uncertainty quantification of ( )f x  
Design objective function ( )f x  is defined based on the 

design scenario and designers’ preference.  In this work we 

consider a typical robust design objective, where the design 
variable x  is assumed random (e.g. x  has a normal distribution 

( ,0.05)N µxx ∼ ). Therefore ( )f x = 
y ykµ σ+ ⋅  where 

yµ  and 
yσ  

are the mean and standard deviation of y (engine slap noise), 
and the weighting factor k is set at k=3.   The robust design 
objective is utilized to reduce the impact of the uncertainty 
associated with the randomness of x . On the other hand,  since 
the uncertainty of ˆ ( )rY x  is reducible with more experiment data 
are added, essentially, it is the inherent uncertainty in design 
objective function ( )f x , due to the model uncertainty, that 
influences the confidence in making any design decision. 
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Figure 5.5 Prediction of ˆ ( )rY x and  95% confidence interval 

Prediction of ˆ ( )f x and quantification of its uncertainty is 
computationally challenging. Approximation of the mean and 
variance of ˆ ( )f x in analytical way is discussed by Apley et al 
(2005). Monte Carlo simulation approach is used in this work. 
Based on the mean, variance and covariance of ˆ ( )rY x  given in 
Eqns. (3.15)~(3.17), one can simulate a large amount (e.g. 100) 
of realizations of the random process ˆ ( )rY x .  For simplicity, 
only three of such realizations are selected and shown in Fig. 
5.6. Each single realization of ˆ ( )rY x  determines the 
corresponding realization of ( )f x subject to the randomness of 

x . As a result, the prediction of ˆ ( )f x and its uncertainty is 
quantified, as shown in the bold lines in Figure 5.6.   
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Figure 5.6 Prediction of ( )f x and 95% confidence interval 

(19 physical experiments) 

5.2 Application of Design Validation Metrics 
In this section, we apply the design validation metrics 

DM  

proposed in Section 4 to the engine piston design. Suppose k=5 
design candidates have been identified as 

={0.2, 04, 0.5, 0.65, 0.7}ix  (see Fig. 5.5). To establish the basic 
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notion of probability based comparison, we first explore the 
pair-wise comparison involving two design candidates.  
 
5.2.1 Probability Based Pair-wise Comparison: Pij 
With the consideration of model uncertainty, differentiating the 

predicted performance at two sites ix  and jx is to examine the 

probability of one performance being smaller or larger than the 
other. Under the ‘smaller the better’ scenario, if ˆ ˆ( ) ( )i jf f<x x , 

we could measure the probability based comparison Pij as 
ˆ ˆ{ ( ) ( )}ij i jP P f f= <x x                                              (5.1) 

The larger the 
ijP , the larger capability the predicative 

model ˆ ( )rY x  has in differentiating two designs. Based on the 

calculated mean, variance of ˆ ( )f x , and assuming ˆ ( )if x  and 
ˆ ( )jf x jointly follow the multivariate Gaussian distribution, 

Monte Carlo simulation is conducted to sample a relatively 
large number (e.g., 

sN =1000) of two-dimensional points. 
ijP  is 

calculated by { ( ) ( )}/r r
n i n j sN Y Y N<x x , where 

{ ( ) ( )}r r
n i n jN Y Y<x x  represents the number of two-dimensional 

sampling points among which ( )r
n iY x  is smaller than ( )r

n jY x .  

 
5.2.2 Design validation metrics 

DM  

 From Eqns. (4.1)~(4.3), the calculation in each of the three 
types of ( )D iM x  depends on the probability level in the pair-

wise comparison of design site 
ix  against other designs 

ix ( )j i≠ . The points generated by Monte Carlo simulation of 

ˆ ( )r
iY x  are illustrated in Fig. 5.7. Table 5.3 provides the 

calculated values of three types of 
DM  described in Eqns. 

(4.1)~(4.3) for each design candidate 
ix . 

Table 5.3 
DM  (19 physical experiments) 

Design i 1 2 3 4 5 
( )Multip

D iM x  0 0.1057 0.3379 0.8870 0.6938 
( )Average

D iM x  0.0842 0.2715 0.4830 0.8957 0.7655

( )Worstcase
D iM x  0 0.0150 0.1010 0.6990 0.3010

( )worst iJ x  4 4 4 5 4 
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Figure 5.7 Comparison between five design sites (19 physical 

experiments) 
 

From Table 5.3, it is found that the three different types of 

DM  at design site 
4x  consistently achieve the largest 

DM  value 

among the five design alternatives. Note that 
4x  is also the 

optimal design from the predicted ˆ ( )if x  (the mean value). In 

fact, the ranking order of ( )D iM x  among the five candidate 

design matches (inversely) the ranking order of ˆ ( )if x . ( )D iM x  

provides the confidence of choosing the optimal design 
4x  

against the other alternatives. 
Recall the relation ˆˆ ˆ( ) ( ) ( )r mY Y δ= +x x x . To enhance the 

accuracy of the predictive model, both ˆ ( )mY x  and ˆ( )δ x  can be 

refined. Figures 5.3 shows that ˆ ( )mY x  has already reached a 

high accuracy. In contrast, ˆ( )δ x  contributes much larger 

uncertainty to the predictive model than ˆ ( )mY x . Therefore, to 

refine the predictive model ˆ ( )rY x , additional physical 
experiments need to be conducted to reduce the uncertainty of 
ˆ( )δ x  (at the same time to enhance the accuracy of ˆ( )δ x ). In the 

2nd stage of testing, the remaining fifteen (15) physical 
experiments in Table 5.1 are used. The procedure described in 
Section 5.1 is repeated with 19+15=34 in total physical 
experiment points.  

The updated objective function ˆ ( )f x  and representative 

realizations of ˆ ( )rY x  are shown in Figure 5.8. Compared with 
Figure 5.6, they are more accurate with reduced uncertainty. 
The reduced uncertainty has an impact on the values of the

DM  

metrics. The updated 
DM  values for the five selected design 

sites are summarized in Table 5.4. Because 
4

ˆ ( )f x  achieves the 

smallest predicted performance again, 
4( )DM x  continues to be 

the largest one among the five alternatives as in Table 5.3. It is 
noted that the values of all three types of 

4( )DM x  have 

increased, indicating larger confidence in differentiating design 
alternatives.  
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Figure 5.8 Prediction of ( )f x and 95% confidence interval 

(19+15=34 physical experiments) 
 

  Table 5.4 
DM  (19+15=34 physical experiments) 

Design i 1 2 3 4 5 
( )Multip

D iM x  0 0 0.2137 0.9101 0.7170 
( )Average

D iM x  0.0160 0.2850 0.4807 0.9192 0.7990 

( )Worstcase
D iM x  0     0 0.0310 0.7080 0.2920 

( )worst iJ x  4 4 4 5 4 
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5.2.3 Implications of three types of 
DM  

Although the pair-wise probability comparison is used in 
all three forms (see Eqns. 4.1~4.3) of design validation metrics 

( )D iM x , they have different implications, which are explained 

as follows. Apparently, ( )D iM x  in all three forms ranges from 0 

to 1.  
(1)  Multiplicative Metric  

By Eqn. (4.1), 1/ 4
4 4

1,2,3,5

ˆ ˆ( ) { [ ( ) ( )]}Multip
D j

j

M P f f
=

= <∏x x x . Due 

to the multiplication, 
4( )Multip

DM x  is sensitive to each probability 

value
4ˆ ˆ{ ( ) ( )}jP y y<x x , implying that 

4( )Multip
DM x  can reflect the 

local refinement of predictive model.  
 
(2) Average (Additive) Metric  

By Eqn. (4.2), 
4 4

1,2,3,5

ˆ ˆ( ) { ( ) ( )}/ 4Average
D j

j
M P f f

=

= <∑x x x . 

Unlike the multiplicative metric, 
4( )Average

DM x  is less sensitive to 

each constituent value of 
4

ˆ ˆ{ ( ) ( )}jP f f<x x . If the number of 

alternative designs is large, due to averaging, the local 
refinement of the model might not be reflected in the small 
change of  ( ).Average

D iM x  

 
(3) The Worst-Case Metric  

4( )Worstcase
DM x  takes the worst case (minimum) of 

4
ˆ ˆ{ ( ) ( )}jP f f<x x . Unlike the other metrics that provide an 

overall confidence involving all the other design alternatives, 

4( )Worstcase
DM x  only concerns the most competitive design (2nd 

best design). In Tables 5.3 and 5.4, the last row ( ( )worst iJ x ) 

displays the index of the most competitive design site. For 
instance, 

4( )worstJ x =5 indicates that design 
5x  is the 2nd best 

design to design
4x , or 

5x  is the most difficult to be 

differentiated from design 
4x . 

4( )Worstcase
DM x  is equal to 

4 5
ˆ ˆ{ ( ) ( )}P f f<x x  , which is the lowest probability compared to 

the other three. 

6. CLOSURE 
In this work, a Bayesian approach to model validation is 

presented to provide quantitative assessments of uncertainty in 
using predictive models in engineering design.  Design-oriented 
validation metrics are further developed to guide designers for 
achieving high confidence of using predictive models.  In 
engineering applications where it is too expensive to obtain 
experimental data, the Bayesian inference approach offers 
much flexibility as it requires fewer assumptions and additional 
design knowledge and information can be easily incorporated 
through prior distributions.   

Compared to the existing work, our work results in a full 
Bayesian analysis model for predicting computer model bias 
and true model output, that are both accurate and economically 
sound.  Our approach provides quantitative means to define and 
to assess model validity from the perspective of design decision 
making with the consideration of various sources of 
uncertainties. It offers rigorous methods for quantifying the 
model uncertainty in an intended design domain that may 

interpolate as well as extrapolate from a tested domain.   In 
addition, our work offers a new and improved way of viewing 
model validation by relating its definition to a specific design 
choice.  The proposed measure for assessing design validity 
provides some probabilistic measurements with regard to the 
confidence of using a model for making a specific design 
choice; they can be used to overcome the limitations of many 
existing model validation approaches while providing direct 
estimate of the global impact of uncertainty sources on the 
confidence in a design decision.  Even though our approach is 
demonstrated for a simplified one dimensional engineering 
design problem for ease of visualization, the same approach can 
be applied to problems with multidimensional design inputs 
and the interest is always to provide the probabilistic 
assessment on whether the performance (measured by the 
design objective) of one particular design is better than the 
others. 

In this work, the proposed model validation metrics are 
only applied to design cases with a finite number of candidate 
design alternatives.  Our study lays the ground for 
distinguishing neighboring designs in a continuous design 
space, a much challenging topic that is being investigated.  A 
more general model validation framework is currently under 
development to determine how an optimal should be picked 
along with the activities in model validation.  Future research is 
also planned for particularizing the proposed Bayesian 
validation procedure and statistical inferences for specific 
engineering applications where the natures of available 
experimental and computational data vary.  The estimation of 
prediction bias will be extended to develop validation metrics 
that measure the predictive capability of a model considering 
both tested and untested regions.  The role of design validation 
metrics in engineering design will be further extended by 
introducing not only product design decisions but also 
decisions in allocating the resources for physical and computer 
experiments.  This will require the incorporation of decision 
analysis techniques to study the tradeoffs involved in model 
refinement and uncertainty reduction by considering designers’ 
preference.  
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