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ABSTRACT
In this article, a robust design procedure is applied to

achieve improved vehicle handling performance as an
integral part of simulation-based vehicle design.  Recent
developments in the field of robust design optimization and
the techniques for creating global approximations of design
behaviors are applied to improve the computational efficiency
of robust vehicle design built upon sophisticated vehicle
dynamic simulations.  Our approach is applied to the design
of a M916A1 6-wheel tractor / M870A2 3-axle semi-trailer.
The results illustrate that the proposed procedure is effective
for preventing the rollover of ground vehicles as well as for
identifying a design that is not only optimal against the worst
maneuver condition but is also robust with respect to a range
of maneuver inputs.  Furthermore, a comparison is made
between a statistical approach and a bi-level optimization
approach in terms of their effectiveness in solving robust
design problems.

NOMENCLATURE
x Vector of design variables
f(x) Objective function
gj(x) Constraint functions
kj Constant in worst case analysis
µf Mean of the objective function
σf Standard deviation of the objective

function
Cdk, Cdl, Cdk Design capability indices
LRL Lower Requirement Limits
URL Upper Requirement Limits
∆y Variation from the mean
R Rollover metric
C Critical rollover condition
HH1 Height of hitch above ground (in)
KHX1 Hitch roll torsional stiffness (in-lb/deg)

LTS11 Distance between springs on axle 1 (in)
LTS123 Distance between springs on axles 2 & 3 (in)
LTS2123 Distance between springs on axles 4,5 & 6 (in)
M11 Laden load for axle 1 (lbm)
M123 Laden load for axles 2 & 3 (lbm)
M2123 Laden load for axles 4, 5 and 6 (lbm)
KT11 Axle 1 tire stiffness (lb/in)
KT123 Axles 2 & 3 tire stiffness (lb/in)
KT2123 Axles 4, 5 & 6 tire stiffness (lb/in)
SCFS11 Axle 1 spring stiffness scale factor
SCFS123 Axles 2 & 3 spring stiffness scale factor
SCFS2123 Axles 4,5 & 6 spring stiffness scale factor
start_brake Start time of braking (sec)
brake_level Level of braking pressure (psi)
end_brake End time of braking (sec)
steer_level Steering angle (deg)
start_steer Start time of steering (sec)
end_steer End time of steering (sec)

1. INTRODUCTION
Recent years have seen significant progress in developing

simulation tools that can predict the performance of vehicle
dynamic systems.  Although the fidelity of these tools has
been improved tremendously by introducing advanced control
analysis and synthesis methodologies, high computational
resources are still required even after the advent of
inexpensive high-end workstations.  This becomes a
challenging issue especially while examining those vehicle
behaviors where worst-case conditions must be evaluated over
a range of operating conditions.  An example is the study of
vehicle handling performance in which the extreme maneuver
conditions must be identified for a given maneuvering profile.
Researchers have applied classical optimal control and game
theory to obtain linear solutions analytically and used
numerical methods for nonlinear situations in worst-case
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evaluations (Ma and Peng, 1996).  Though useful, these
procedures still require a significant amount of computations
and are limited to the analysis, but not design, of vehicle
systems.  There is a need for a systematic design approach
that can both utilize the capabilities of existing sophisticated
vehicle simulation programs and optimize the vehicle
performance by considering the extreme maneuvering
conditions in a computationally efficient manner.

In this article, we propose to incorporate a robust design
procedure as an integral part of simulation-based vehicle
design. Foundational to this work is the Robust Concept
Exploration Method (RCEM) developed in our research for
designing complex engineering systems (Chen, 1995; Chen et
al., 1996a; Chen et al., 1997).  RCEM is a systematic design
approach that can be used to quickly evaluate design
alternatives and to develop design specifications with quality
considerations.  In particular, RCEM employs the principles
of Design of Experiments (DOE) (Montgomery, 1991) to
improve the computational efficiency in designing complex
systems. This is achieved by creating surrogate global
response surface models (Box et al., 1978) of the expensive
simulation programs.  The robust design concept (Phadke,
1989) is utilized to determine specifications that are robust,
i.e., insensitive to adjustments in later stages of design or
during operation, and flexible, i.e., allowed to vary within a
range. RCEM has been tested for various engineering design
problems (Chen et al., 1997; Simpson et al., 1996; Koch et
al., 1996; Peplinski et al., 1996; Lautenschlager et al., 1996;
Bailey et al., 1997).  The type of analysis (simulation)
programs used in these applications ranges from airframe and
propulsion analyses in aircraft design, engine thermodynamic
analysis, and finite element structural analysis, to
manufacturing systems analysis. These applications
illustrated that RCEM can be used to integrate multi-
functional analyses across disciplines, to permit the
introduction of downstream design considerations in the early
stages of design and to provide flexibility to the design
process.

In this work, the principles embodied in RCEM are
utilized to achieve improved vehicle handling performance
under a given range of maneuver conditions.  Our focus is on
studying the applicability of the robust design procedure
embodied in RCEM to designs involving complicated
evaluations of system dynamic performance, a domain that
was not covered in previous RCEM applications.  Significant
computational resources are needed to evaluate dynamic
behavior. Other challenges of this type of problems are
associated with the existence of large number of design
variables and parameters that are subject to variations (e.g.,
operating conditions).  We will illustrate the effectiveness of
our approach through the design of a M916A1 6-wheel
tractor / M870A2 3-axle semi-trailer. Under certain
maneuvers, the tractor-trailer model under consideration is
subjected to rollover conditions, which can be quite

detrimental and have been reported to be the cause of nearly
one-third of all roadside crashes in the United States
(Mohemedshah and Council, 1997).  There is a need to
determine vehicle and suspension parameters that can prevent
this damaging behavior.  Our approach is used to optimize
vehicle and suspension parameters such that (i) extreme
rollover conditions do not occur and (ii) variation of the
rollover performance is minimized for the range of maneuver
conditions.  The computational efficiency is improved by
using response surface models instead of ArcSim (ArcSim,
1997; Sayers and Riley, 1996), an integrated ground vehicle
dynamics simulation program.  We illustrate a sequential
experimentation strategy for creating response surface models
over a significant number of design variables using a limited
number of simulations.  We also demonstrate the effectiveness
of two different strategies for robust design optimization,
namely, the statistical approach and the bi-level optimization
approach.  The design capability index (Chen et al., 1997) is
shown to be an effective tradeoff metric between the mean
and variance attributes in robust design.  Worst-case vehicle
design studies using the full-blown ArcSim simulation have
been presented by (Michelena and Kim, 1998) and are used in
this work to further illustrate the advantages of the proposed
robust design procedure.

The article is organized as follows.  The adaptation of the
robust design procedure embodied in RCEM for simulation-
based vehicle design is presented in Section 2.  This section is
followed by a detailed description of the robust design metric
used in the study (Section 3).  The application of our
approach to improving the handling behavior of a ground
vehicle is presented in Section 4.  Results and verification
studies are also included.  Section 5 is the closure of the
article.

2. THE ROBUST DESIGN METHODOLOGY FOR
SIMULATION-BASED VEHICLE DESIGN
The robust design principles in RCEM are employed in

this work to develop a systematic and affordable approach for
simulation-based vehicle design that involves sophisticated
evaluations of dynamic behaviors.  Figure 1 is a flow chart of
the proposed procedure.  The major components of this
infrastructure include four processors (modules B, D, E and
F) and a simulator (module C).   The central slot, module C,
is the high fidelity vehicle dynamic evaluation program.  The
different processors correspond to the three major steps of the
proposed procedure.

In Step 1 (module A), based on the principles of quality
engineering, vehicle parameters are classified as control
factors (design variables), noise factors (uncontrollable
variables), and responses (performance).  Step 2 is used to build
the response surface models used to replace the expensive vehicle
dynamics evaluation program through a sequential experimentation
strategy.  Module B and the simulator C perform computer
experiments in a systematic manner. The results are analyzed
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in module D and the response surface model is created in
module E.  Depending on the desired order of the response surface
model, different types of experiments are chosen by module B to
achieve the best accuracy of the surrogate models.  Using the response
surface models, in Step 3 the robust design method is applied to
generate design solutions that are robust to potential design deviations
(module F).   The robust design formulation and the associated
robust design metric are further explained in Section 3.

3. THE ROBUST DESIGN METRIC
A robust optimization problem can be formulated as the

following multiobjective optimization problem,

given a range of z and the objective function  f(x, z)
find x that
minimizes ( µ f ,σf )
subject to
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xL ≤ x ≤  xU,
where fµ  and fσ  are the mean and the standard deviation

of the objective function f(x, z), respectively.  To study the
variation of constraints under the deviation of noise factors z,
we use the worst-case scenario, which assumes that all

variations of system performance may occur simultaneously
for the worst possible combination of design variables
(Parkinson et al., 1993).  jk  is a constant, chosen by the
designer, that reflects the compensation of the error in
estimating the worst case when using the first-order Taylor
expansion.  Depending on the computational resources, fµ
and fσ  can be obtained through simulations or analytical
means such as Taylor expansions.

It can be noted from Eqn. (3.1) that the robust design
objective involves two aspects, one is the optimization of the
performance mean fµ  and the other is the minimization of

the performance variance fσ .  When these two objectives
need to be treated separately, the robust design problem can
be modeled using a multiobjective optimization formulation
(Chen et al., 1998; Iyer and Krishnamurty, 1998).  However,
when the conformation of the whole performance distribution
with respect to the design requirement is the major concern,
these two aspects are interrelated (Chen et al. 1997).  In this
case, a unified robust design metric is necessary to capture the
tradeoffs between these two aspects.  Note that the
construction of this metric is strongly associated with
designer’s real needs.

Input / Output

Processor

Simulation
Program

Response Surface ModelE.
.A. Factors and Ranges

Product/
Process

Control
Factors

Noise
Factors

 Response

Z

X
Y

Design of Experiments

Plackett-Burman
 Full Factorial Design

Fractional Factorial Design
Taguchi Orthogonal Array
Central Composite Design

etc.

B.   Point Generator

Factor A

Factor B

FactorC

A
1 A2 A 3

B1

B
2

B
3

C 1

C2

C 3

C.

D.   Experiments Analyzer

Identify the factor significance

Find Control Variables x
Satisfy

Constraints

Mean of Performance

Minimize Performance
Variance

Optimize

F. Optimization Template

1

X1

X2

y

y = f(x, z)

Design
Requirements
(Constraints,
Objectives)

Reduce the size of the
problem

Simulations of Vehicle
Dynamic Behaviors

Robust Design

Figure 1 Schematic of Proposed Approach



4 Copyright © 1999 by ASME

In this work, we adopt the design capability index Cdk
(Chen et al. 1996b) as the robust design metric for improving
vehicle handling performance.  The design capability index
was developed as a metric to measure the portion of the range
of designs that satisfies the ranged design requirement.
Depending on whether the performance attribute is desired to
be “the nominal the better,” “the smaller the better,” or “the
larger the better,” Cdk is computed differently.  For “the
nominal the better”, Cdk  is the minimum of Cdu and Cdl,
where

,
ˆ3

µ-URL
C ;

ˆ3
LRLµ

C dudl σσ
=−=         (3.2)

and LRL and URL stand for the lower and upper requirements,
respectively.  A value of Cdk greater than one indicates that the
whole performance distribution will satisfy the design
requirements.  Statistically, the use of 3σ implies that when
Cdk reaches 1, 99.865% of the performance distribution
conforms to the requirements, assuming that the performance
is normally distributed.  An alternative to the statistical
representation of the performance deviation in Eqn. (3.2) is the
use of extremes of performance that occur in the worst and best
possible combination of the noise factors.  Correspondingly,
the system performance varies between µ - ∆y and µ + ∆y, and
Eqn. (3.2) is modified as follows:

,
µ-URL

C ;
LRLµ

C dudl yy ∆
=

∆
−=                 (3.3)

where µ is the center and ∆y is the difference between the
two extremes of performance, namely, the best and worst
performance.  In this research, we compare the effectiveness of
two robustness evaluation strategies that use Eqns. (3.2) and
(3.3) as the robustness measurements.  The former strategy is
called the statistical approach and the later is named the bi-
level optimization approach in which the worst and best
performances are identified using sublevel optimizations.
Details of the implementation of these strategies for improved
vehicle handling performance are provided in Section 4.3.

4. APPLICATION TO THE IMPROVEMENT OF
VEHICLE HANDLING PERFORMANCE
The proposed approach is applied to vehicle design for

improved handling, in particular for prevention of rollover.  As
mentioned in Section 1, rollover of ground vehicles is one of
the major causes of highway accidents in the United States.
Rollover generally occurs when a vehicle is subjected to
extreme steering and braking inputs. To prevent rollover, there
is a need to optimize those vehicle and suspension parameters
that will make the design less susceptible to rollover under a
range of maneuver conditions.  In this project, the vehicle is
assumed to be subjected to sudden steering to the left and to
the right with the application of brakes, a scenario that often
occurs for lane changing or obstacle avoidance.

4.1 The Simulator and Classification of Parameters
The simulator (Module C, Figure 1) for this design study

is the integrated computer tool ArcSim (ArcSim, 1997; Sayers
and Riley, 1996) developed at the University of Michigan for
simulating and analyzing the dynamic behavior of 6-axle
tractor-semitrailers.  ArcSim can simulate responses to user-
defined steering and braking inputs, on flat or inclined ground
surfaces.  The program contains a nonlinear 3D mathematical
model with 91 state variables, a nonlinear tire model, and a
detailed steering system model with major compliance effects.
ArcSim considers solid-axle suspensions and major suspension
effects.  ArcSim is a computationally expensive program that
includes more than one hundred input and output parameters.
Each simulation takes more than three minutes to run on a Sun
Ultra-1 workstation.  The testing of an optimization scenario
without robustness consideration takes at least five hours to
converge (Michelena and Kim, 1998).  When robustness
considerations are introduced the total computational time
needs to be multiplied by a factor of 2n, where n is the number
of noise factors, due to the evaluation of performance variance.
The increase in computational demand for robust design
becomes explosive when the number of noise factor increases.

In this study, fourteen ArcSim input parameters
corresponding to suspension and vehicle parameters are
chosen as design variables (control factors).  A list of these
variables and their ranges are given in Table 1.  All the
variables have a range of +/- 20 % from their nominal values
(i.e., the values for the baseline design).  Among the variables
considered, suspension stiffness parameters are very likely to
affect vehicle handling. These stiffness parameters are
represented by spring stiffness scale factors (SCFS11,
SCFS123 & SCFS2123), the vertical stiffness of the tires
(KT11, KT123 & KT2123), and the hitch roll torsional
stiffness (KHX1).  Stiffness scale factors linearly scale the
upper and lower envelopes of exponential spring models. The
distances between the suspension springs (LTS11, LTS123 &
LTS2123) and the height of the hitch (HH1) also influence the
performance of the suspension system.  Laden load distribution
at the axes (M11, M123 & M2123) plays an important role for
vehicle handling, in particular when the vehicle takes sharp
turns.

In most cases, rollover occurs due to extreme steering and
braking inputs. The steering and braking parameters are taken
as the noise factors.  Six noise factors are chosen, three
corresponding to the braking inputs and three corresponding to
the steering inputs.   Their ranges are provided in Table 2. The
ranges of start_brake and end_brake are +/- 15% from their
nominal values to avoid overlap of the two parameters,
whereas the other parameter ranges are +/- 20% from their
nominal values.  The level of braking is the amount of braking
pressure applied. The level of steering is the angle the steering
wheel is turned.  The starting and ending times define total
time of braking and steering.



5 Copyright © 1999 by ASME

Table 1 Design Variables and Their Ranges
Design Variable Description Low High

HH1 Height of Hitch above ground 51.2 in 76.8 in
KHX1 Hitch roll torsional stiffness 8e5 in-lb/deg 1.2e5 in-lb/deg
LTS11 Distance between springs on Axle 1 30.4  in 45.6 in

LTS123 Distance between springs on Axles 2 & 3 30.4 in 45.6 in
LTS2123 Distance between springs on Axles 4,5 & 6 30.4 in 45.6 in

M11 Laden load for Axle 1 11540 lbm 17310 lbm
M123 Laden load for Axles 2 & 3 20358.4 lbm 30537.6 lbm
M2123 Laden load for Axles 4, 5 and 6 16274.4 lbm 24411.6 lbm
KT11 Axle 1 tire stiffness 5520.00 lb/in 8280.00 lb/in

KT123 Axles 2 & 3 tire stiffness 5520.00 lb/in 8280.00 lb/in
KT2123 Axles 4, 5 & 6  tire stiffness 4139.20 lb/in 6208.80 lb/in
SCFS11 Axle 1 spring stiffness scale factor 0.8 1.2

SCFS123 Axles 2 & 3 spring stiffness scale factor 0.8 1.2
SCFS2123 Axles 4,5 & 6 spring stiffness scale factor 0.8 1.2
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Figure 2 Braking and Steering Input Profiles

The plots in Figure 2 represent examples of maneuver
profiles.  Positive and negative angles stand for the direction of
turn to left and right, respectively.  In terms of the vehicle
handling response, it is assumed that if the rollover angle
becomes greater than 450, rollover will inevitably occur.  A
rollover metric is used as the response for which the response
surface model is created.  As shown in Eqn. (4.1), the rollover
metric is defined as the square root of the integral of the square
of the rollover angle in a 5-second period. Rollover angle
versus simulation time is one of the outputs of ArcSim
(Figure 3).

R= roll _ angle2dt0

5∫                                            (4.1)
Five seconds was chosen as the upper limit of the integration,
because it was observed that in all cases, when rollover occurs
the simulation terminates before five seconds.  Since the
rollover angle takes up negative or positive values depending

on whether rollover is to the left or to the right, the square of
the rollover angle is used as the metric.

Table 2 Noise Variables and Their Ranges

Noise Variable Lower Bound Upper Bound
start_brake 1.02 sec 1.38 sec
brake_level 70 psi 100 psi
end_brake 1.53 sec 2.07sec
steer_level 60 deg 100 deg
start_steer 0.24 sec 0.36 sec
end_steer 2.16 sec 3.24 sec

Based on this definition, we note that the value of the
rollover metric is desired to be as small as possible.  For those
situations in which rollover occurs before 5 seconds, the
rollover metric is magnified by an additional area, from the
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stopping time to the end of the five-second period. Thus, a
rollover metric for a simulation that terminates in less time
almost always has a larger value.

Figure 3  Integration of Rollover Angle vs. Time

4.2 Development of the Response Surface Model
Evaluation of the extreme condition for vehicle handling

performance is a time consuming process as the worst
maneuver must be identified among a set of possibly infinite
number of combinations of steering and braking inputs.  This
problem becomes more significant in robust design as not only
the worst performance but also the deviation of the whole
performance must be identified.  Hence, it is not practical to
use ArcSim directly as the simulation module for optimization.
A surrogate model for the ArcSim simulation program is
therefore needed.

Following the procedure described in Section 4.1, the
design variables and noise variables included in Tables 1 and 2
were chosen as the input factors in the screening experiments,
whereas the rollover metric was taken as the output.  The
screening experiments were first performed to identify those
factors that have a significant impact on the response.  The
Latin Hypercube design of experiments was chosen for the
screening experiments.  For Latin Hypercube design, the
design space for each factor is divided by grid lines that are set
equal to the number of inputs, and each input is randomly
selected from within this grid.  The Latin Hypercube design
tends to be more uniform across the design space and thus
ensures that a wide range of the design space be covered. The
number of experiments performed was set at 350, which is
above the minimum requirement of 231 experiments to fit a
quadratic response surface models of 20 factors. Usually a
greater number of experiments will ensure a better fit.

Through the experimentation, the data were analyzed and
the contributions were ordered in terms of their significance.
The chart in Figure 4 shows the contributions of the main
factors1 only.  It is evident from this chart that 95% of the

                                                       
1 Main factor effect refers to the contribution from an individual design

variable that is independent from the rest of variables.

main effects is contributed by nine design variables and five
noise variables, whereas the other parameters contribute only
5%.  From these observations, it was decided that these
fourteen variables would be used for further secondary
experiments and the remaining would be maintained at their
nominal values.  In general, the main factors showed a greater
significance than the interaction terms.  From the chart it is
noted that the noise variables brake_level, steer_level, and
end_brake play a very significant role in the design.  Only one
noise variable, start_steer, does not make a significant
contribution.

Factors

Percentage Contribution
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LTS123

M2123
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HH1

M11
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SCFS11

LTS2123

Rest

Figure 4  Contributions of Main Factors

Secondary experiments were performed to fit a quadratic
response surface model on the reduced set of design factors (14
factors).  In this case the minimum number of experiments
required is 120 ( 14 x 13 / 2 = 91 for the interaction terms, 2 x
14 = 28 for the main effects and 1 for the constant term).  As
two to three times of the minimum number of experiments are
often required to ensure a good fit, a total of 363 experiments
were performed, which included 225 Latin Hypercube
experiments, 121 grid experiments, and 17 Resolution III
Fractional Factorial Experiments.  These various types of
experiments were performed to ensure a good fit representing
the behavior across the whole design space.  The grid
experiments are those designs for which only the two most
important factors (brake_level and steer_level) vary, and the
remaining variables are maintained at their nominal values.
They are performed to ensure that the behavior with respect to
the most important factors is captured. The resolution III
experiments are used to capture the main effects.  As
verification, the response from ArcSim and the response
surface model is compared in Figure 5. These plots are
obtained by performing 121 grid experiments for the two most
important factors, while fixing the rest at their nominal levels.
A regression coefficient of one ensures a perfect fit. The
regression coeficients were R^2 = 0.8775, R^2_adj = 0.8175,
and R^2_press = 0.504, thus indicating that there is room for
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Figure 5 Comparison of RSM with the Actual Program

improvement in the model.  However, the use of higher order
polynomial models often increases the minimum number of
experiments required.  For 14 factors, the minimum number of
experiments increases from 120 to 302 when changing from a
quadratic polynomial to a cubic-order response (not
considering three-factor interactions).

4.3 Robust Design Optimization
The design of the truck/trailer for improved handling

under a range of maneuver conditions is modeled using the
robust design formulation discussed in Section 3.  The
formulation is restated in Figure 6.  Note that the design
variables and the noise factors are the reduced set of variables
identified based on the analysis of Section 4.2.

Since we aim at minimizing the rollover metric, the
formulae of Cdk for “the smaller the better” scenario is used as
the robust design metric.  URL is the upper requirement limit,
i.e., the critical rollover condition.  The value of the rollover
metric at which the rollover just occurs is considered as the
critical rollover condition.   In this work, this value is obtained
empirically.  Figure 7 is a plot of the rollover metric versus the
simulation stopping time based on the results from both the
preliminary and secondary simulations (Section 4.2).  Only
those data points from simulations where termination has
occurred before the 5-second period are plotted.  This curve is
extrapolated to a stopping time of 5 seconds.  It is observed
that the critical rollover metric is around 45 deg-sec1/2.  This
indicates that if the rollover metric is above this value, rollover
will certainly occur.

Given
Range of noise factors (start_brake, brake_level,
       end_brake, steer_level, and end_steer)2

Find
The tire and suspension parameters (LTS123, M2123,
KT2123, KT2123, HH1, M11, LTS11, SCFS11, LTS2123)3

Satisfy
M11 + 2*M123 + 3*M2123 = Constant
(The total sum of the laden loads needs to be maintained constant.)
LWB(2) - LXRL(1)/2  ≥ LXCGPL ≥ LXRL(1)/2
(The difference between the wheel base of the tractor and half the
length of the box load should be greater than both the distance to
the rear of the CG and half the length of the box load).

Boundaries of the variables

Maximize
Robust Design Metric

Statistical approach Cdk = (URL-µy)/3σy

Bi-level approach Cdk = (URL-y
–

)/∆y
y : rollover metric R; URL : critical roll over condition

Figure 6   Robust Design Formulation

                                                       
2 Refer to Table 4.2 for further information
3 Refer to Table 4.1 for further information.
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Figure 7  Determination of Critical Rollover Condition

As discussed in Section 3, the robust design metric can be
evaluated using either the statistical approach or the
performance under extreme conditions.  Correspondingly, two
strategies, namely the statistical approach and the bi-level
optimization approach can be used to solve the robust design
problem.  In the statistical method, an assumption of normal
distribution for the response is made and the mean and
standard deviation are obtained statistically.  The bi-level
optimization method is more conservative and the mean was
assumed to be at the center of the worst and best design within
the range of maneuver conditions.  Figure 8 shows the flow
charts of these two approaches.

When using the statistical approach, for a given range of
maneuver conditions, sets of design variables, i.e., vehicle and
suspension parameters, are generated by the optimizer.
Vehicle performance is then evaluated by choosing the noise
parameters from the range of maneuver conditions.  If a 3-
level full factorial design is used, 243 experiments are
performed per iteration— since there are 5 noise variables.
The statistical mean and variance of the rollover metric is
obtained and the value of the robust design metric is
calculated.  This design metric is maximized and the process is
repeated until convergence is achieved.  In this particular case,
the procedure involves 243 function calls in the inner loop for
each iteration in the outer loop.  The total number of function
calls could be reduced by using fractional factorial design or
Taguchi’s orthogonal arrays.

When using the bi-level optimization approach, sets of
design variables are also generated by the optimizer.  In the
inner sub-optimization routine, the noise variables are varied
such that the worst (maximum) and the best (minimum) values
of the robust design metric are obtained for a particular setting
of the design variables. Thus, each iteration of the outer loop
involves a maximization and a minimization problem at the
sublevel.  The robust design metric is calculated based on the
extreme conditions and the metric is maximized until
convergence is achieved.  Depending on the number of

function calls needed for the inner optimization loop, the total
number of function calls for the bi-level approach can be less
or more than for the statistical approach.
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4.4 Results and Discussions
To improve computational efficiency, the robust design

model in Figure 6 is solved using the response surface model
for the rollover metric.  It is first noticed that the best Cdk

obtained from both the statistical and the bi-level optimization
methods is 0.7825.  Since this value is less than one, it
indicates that for the given range of maneuver conditions, it is
likely that some combinations of noise variables will result in
rollover.  A design where the Cdk value is greater than one can
be obtained by reducing the range of three of the noise
variables, as show in Table 3.

Table3 The Reduced Range of Noise Variables

Variable Low High
end_brake 1.611 1.989
steer_level 66 94
brake_level 77.5 112.5

Graphical representations of the probability of the rollover
under both the original range (full range) and the reduced
range of noise variables are presented in Figure 9.  The plot is
obtained by running ArcSim, setting the vehicle and
suspension design variables at the optimal values identified
through robust design, and running a Central Composite
Inscribed (CCI) design (43 experiments) for points within the
range of the noise variables (steering and braking inputs).  The
optimal levels of vehicle and suspension variables are obtained
from the statistical approach.  The vertical axis stands for the
frequency of occurrence.  It is evident that under the original
range, there are instances where rollover might occur (i.e., the
rollover metric might be greater than 45 deg-sec1/2).  The
probability of rollover occurrence is close to 5%.  Cdk equals
2.559 for the reduced range.  This implies that rollover is very
unlikely for the reduced range of maneuver conditions, as
shown by the picture at the bottom of Figure 9.

When comparing the results of the two robustness
evaluation strategies, we found that the achieved Cdk  is the
same for the full noise range. For the reduced range, the design
from the bi-level optimization method is marginally better
since the Cdk value (2.795) is greater than that obtained from
the statistical method.  The robust design solution for the
reduced range of noise factors is also compared to the baseline
design peformance.  Figure 10 shows the distribution of the
rollover metric for the baseline design for the reduced range of
noise variables.  It is noted that probability of rollover
occurrence is very high for this design.  The standard deviation
of the rollover metric for the baseline (17.9133) is much higher
than the one obtained from the robust design formulation
(4.80326).  We observe that the distribution of the rollover
metric is much more far away from the critical rollover
condition when the robust design approach is applied.  Thus,

we can conclude that robust design optimization has resulted
in improved vehicle handling performance.
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 Figure 10  Distribution of the Rollover Metric for the
Baseline Design (Reduced Noise Range)

In Figure 11, the baseline design is compared with the
robust design in terms of deviation of the robust design
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solution from the baseline design.  The central 0% line
represents the baseline design values.  The range from –20% to
+20% was chosen for the design variables.  We note that the
robust design solution generally lies at the boundaries of the
range of the design variables and a nearly four-fold
improvement in the robust design metric.  For variables such
as hitch height, hitch roll torsional stiffness, distance between
springs on axle 1 and axles 4, 5 & 6, laden load for axles 2 & 3
and 4, 5 & 6, and spring stiffness factor of axle 1, the final
design values are at their lower bound, i.e., 20% below the
baseline values.  For the rest of the variables the design is at
the upper bound, i.e., 20% above the baseline values.

Figure 11  Comparison Between the Baseline Design
and the Robust Design

5. CLOSURE
In this article, a robust design procedure is incorporated as

an integral part of simulation-based vehicle systems design.  It
is illustrated through an example problem that this approach is
very useful for designing a vehicle for improved handling
performance. This is a type of problem that demands
significant computational resources for system dynamics
simulation and the evaluation of extreme operating conditions.

The first major advantage of our approach is the
improvement of computational efficiency in vehicle systems
design by using a response surface model (surrogate model)
instead of the actual sophisticated simulation program.  The
surrogate model reduces significantly the computational time
required for evaluation of performance distribution in robust
design.  For a robust optimization procedure that involves 243
function calls in the inner loop and 40 iterations in the outer
optimization loop, robust optimization using ArcSim on a
SUN Ultra-1 would require close to 500 hours, while it takes
less than 2 minutes using the RSM.  One may argue that the
time spent on simulations for fitting the RSM should be
considered.  For this particular example, the total number of

simulations employed in the sequential experimentation is 713
(a simulation time of 36 hours). The computational time
required for fitting the response surface model is negligible at
this level of comparison.  This significant reduction of
computational demand makes the optimal design of vehicle
systems more tractable.  Comparatively, worst-case vehicle
design studies using the full-blown ArcSim simulation and
involving fourteen design parameters and three maneuver
parameters (Michelena and Kim, 1998) have shown to demand
for simulation time in the order of 100 hours on a SUN Ultra-
1. This approach models the problem as a semi-infinite
programming problem in which the rollover metric is
simultaneously maximized with respect to maneuver
parameters and minimized with respect to design parameters.

Note also that the global response surface model obtained
can be reused for design evaluations or optimizations with
changed criteria.  Therefore, the approach facilitates the
exploration of design solutions through exercising different
design scenarios.

The second major advantage of our approach is the
introduction of the robust design concept into the design
formulation of vehicle design problems in which certain
operating parameters are subject to variations.  This is superior
to conventional worst-case evaluation in that the design is not
only optimal against the worst maneuver condition but is also
robust with respect to a range of maneuver inputs.  Through
the example problem, it is illustrated that both the statistical
approach and the bi-level optimization strategy are useful for
robust design.  While the former may lower the total number of
function evaluations using the reduced set of simulations based
on the statistical principle, the later may generate over-
conservative designs in many cases.

We have illustrated the use of a sequential
experimentation strategy for problems with a large number of
design variables.  Problem size was reduced by conducting
screening experiments.  Although the response surface model
using the quadratic function is not a perfect fit of the true
behavior of the model, the design solution obtained using the
RSM has been illustrated to be very close to the solution using
the ArcSim program— because computer simulations were
chosen such that the points selected belong to the most critical
design region.  For future improvement, approximation
techniques such as Artificial Neural Networks (ANN) (Smith
1993) and the Kriging method (Cressie, 1988) could be used to
replace the quadratic models.  Since most of the design
solution lies at the boundaries, it will be interesting to study
whether relaxing the design range further improves the
systems behavior.  The same design principle illustrated in this
article can be extended to considering multiple dynamic
behaviors or other design requirements using multiobjective
optimization formulations.



11 Copyright © 1999 by ASME

ACKNOWLEDGMENTS
The support from NSF through grant DMII 9624363 for

the development of Robust Concept Exploration Method is
gratefully acknowledged. We are grateful for the contract with
the Tank Army Command (TACOM) on Advanced Vehicle
Systems Design and the support from the Automotive Research
Center (ARC).  We thank LMS International, Belgium, for the
use of OPTIMUS® in creating response surface models.

REFERENCES
ArcSim User’s Guide, Automotive Research Center, The

University of Michigan, Ann Arbor, July 1997. PDF version
can be downloaded from http://arc.engin.umich.edu/sw_distri/
ARCSIM/ arcsim.html

Bailey, R., Allen, J.K., Bras, B., and Mistree, F., 1997, “A
System Level Approach to the Design of an Industrial
Ecosystem,” 1997 ASME Design Engineering Technical
Conference, Sacramento, Paper No. 97-DETC/DAC-3962.

Box, G.E.P., Hunter, W.G. and Hunter, J.S., 1978,
Statistics for Experiments, John Wiley & Sons, New York.

Chen, W. 1995, "Robust Conceptual Exploration for
Configuring Complex Engineering Systems,” Ph.D.
Dissertation, G.W. Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta,
Georgia, August 1995.

Chen, W., Allen, J. K., Mavris, D., and Mistree, F., 1996a,
"A Concept Exploration Method for Determining Robust Top-
Level Specifications" Engineering Optimization, 26, 137-158,
(1996).

Chen, W., T.W. Simpson, J. K. Allen, and F. Mistree,
1996b, "Using Design Capability Index for Satisfying a
Ranged Set of Specifications," 1996 ASME Design
Automation, Conference, Irvine, California, Paper Number 96-
DETC/DAC-1090

Chen, W., J. K. Allen, K-L. Tsui, and F. Mistree, 1996c,
"A Procedure for Robust Design" Transaction of the ASME
Journal, Journal of Mechanical Design, 118, 1996, pp. 478-
485.

Chen, W., Allen, J. K., Schrage, D.P., and Mistree, F.,
1996d, "Statistical Experimentation Methods for Achieving
Affordable Concurrent Design,” AIAA Journal of Aircraft
Design.

Chen, W., Allen, J.K., and Mistree, F., 1997, “The Robust
Concept Exploration Method for Enhancing Concurrent
Systems Design,” Journal of Concurrent Engineering:
Research and Applications, 5(3), 203–217, September 1997.

Chen W. and Varadarajan S., 1997, "Integration of Design
of Experiments and Artificial Neural Networks for Achieving
Affordable Concurrent Design,” 38th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics
and Materials Conference, Kissimee, FL, AIAA paper No. 97-
1230, April 1997, pp. 1316-1324,

Chen, W., Wiecek, M. M, and Zhang, J., 1998, “Quality
Utility: A Compromise Programming Approach to Robust

Design”, 1998 ASME Design Technical Conference, paper no.
DAC5601, Atlanta, GA. In press, ASME Journal of
Mechanical Design.

Cressie, N, 1988, “Spatial Prediction and Ordinary
Kriging,” Mathematical Geology, Vol 20(4), pp. 405-421.

Iyer, H.V. and Krishnamurty, S., “A Preference-Based
Robust Design Metric”, 1998 ASME Design Technical
Conference, paper no. DAC5625, Atlanta, GA.

Koch, P.N., Barlow, A., Allen, J.K. and Mistree F., 1996,
"Configuring Turbine Propulsion Systems using Robust
Concept Exploration," 1996 ASME Design Automation,
Conference, Irvine, California, August 1996.  Paper Number
96-DETC/DAC-1285.

Lautenschlager, U., Eschenauer, H., and Mistree, F., 1996,
"Components of Turbo Systems – A Proposal for Finding
Better Layouts,” AIAA/NASA/USAF/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Bellevue,
Washington, September 4-6, 1025-1035.

Ma, W. and Peng, H., 1996, "Worst-case Evaluation
Methods for Vehicle Control Systems," Proceedings of the
1996 ASME International Congress and Exposition, Atlanta,
GA.

Michelena, N. and Kim, H-M, 1998, “Worst-Case Design
for Vehicle Handling,” Fourth Annual Conference on
Modeling and Simulation of Ground Vehicles, The Automotive
Research Center, The University of Michigan, Ann Arbor, May
19-20, 1998.

Mohamedshah, Y., Council, F., “Synthesis of Rollover
Research,” March 10, 1997.

Montgomery, D. C., 1991, Introduction to Statistical
Quality Control, John Wiley & Sons, New York.

Peplinski, J.D., Allen, J.K. and Mistree F., 1996
“Integrating Product Design with Manufacturing Process
Design using the Robust Concept Exploration Method," 1996
ASME Design Automation, Conference, Irvine, California,
August 1996. Paper No. 96-DETC/DTM-1502.

Parkinson, A., Sorenson, C., Pourhassan, N, 1993, "A
General Approach for Robust Optimal Design," ASME Journal
of Mechanical Design, Vol. 115, pp. 74-80.

Phadke, M.S., 1989, Quality Engineering using Robust
Design, Prentice Hall, Englewood Cliffs, NJ.

Sayers, M.W. and Riley, S.M., 1996, “Modeling
Assumptions for Realistic Multibody Simulations of the Yaw
and Roll Behavior of Heavy Trucks,” SAE Paper No. 960173.
Society of Automotive Engineers, Warrendale, PA.

Simpson, T.W., W. Chen, J.K. Allen, and F. Mistree,
1996, "Conceptual Design of a Family of Products Through the
Use of the Robust Concept Exploration Method,”
AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Bellevue, Washington, September
4-6, 1996.

Smith, M., 1993, “Neural Networks for Statistical
Modeling,” Von Nostrand Reinhold, New York.


