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ABSTRACT 
Uncertainty is inevitable at every stage of the life cycle 

development of a product.  To make use of probabilistic 
information and to make reliable decisions by incorporating 
decision maker’s risk attitude under uncertainty, methods for 
propagating the effect of uncertainty are therefore needed.  
When designing complex systems, the efficiency of methods for 
uncertainty analysis becomes critical. In this paper, a most 
probable point (MPP) based uncertainty analysis (MPPUA) 
method is proposed.  The concept of the MPP is utilized to 
generate the cumulative distribution function (CDF) of a system 
output by evaluating the probability estimates at a serial of  
limit states. To improve the efficiency of locating the MPP, a 
novel MPP search algorithm is presented that employs a set of 
searching strategies, including evaluating derivatives to direct a 
search, tracing the MPP locus, and predicting the initial point 
for MPP search. A mathematical example and the Pratt & 
Whitney (PW) engine design are used to verify the effectiveness 
of the proposed method. With the MPPUA method, the 
probabilistic distribution of a system output can be generated 
across the whole range of its performance.   
 
1. INTRODUCTION 

The notion that engineering design is a decision-making 
process has been paid more and more attention in recent years 
(De Neufville, 1990; Hazelrigg, 1996, 1998, 1999; Pinto, 
1998).  To rank order different design options, designers 
(decisions makers) usually rely on mathematical models (or 
computer simulation models) to predict system behaviors and 
ultimately design utility.  However, despite the enormous power 
of computational models, they are not perfect because all of 
them are only abstractions of the realities. Due to the lack of 

knowledge and the use of assumptions by model builders, 
uncertainty is inevitable for models at every stage of s life 
cycle. As the result, the model-predicted performance of a 
system and the actual system performance will deviate at s 
certain level.   

When uncertainty is considered in engineering design, 
probabilistic design models are adopted instead of deterministic 
models. Unfortunately, probabilistic models require order(s) of 
magnitude increase in the analysis in comparison to the 
deterministic models (DeLaurentis and Marvris, 2000). The 
problem is worse when a design model involves much more 
complex computations, such as calculations of stresses, 
temperatures, heat transfer rates, and fluid flows through 
numerical algorithms or simulation tools that could involve 
finite element analysis, computational fluid dynamics, etc.  One 
of the challenges to use probabilistic design models is to 
capture the effect of uncertainty on a system output in an 
efficient manner. The problem can be stated as: given the 
probability distributions of the random variables in a system 
(e.g., those of the design variables and parameters), what 
should be the probability distribution of a system output?  The 
issue is how to propagate the effect of uncertainty. This process 
is often referred to as uncertainty analysis. Our aim in this paper 
is to develop efficient methods for uncertainty analysis that are 
usable in engineering design applications. 

Once the effect of uncertainty is propagated, the 
information on the distribution of a system output will be used 
further for making reliable decisions through optimization.  The 
decision-based design (DBD) (Hazerlrigg 1998) is such a 
framework that provides the capability to make use of 
probabilistic information and to incorporate decision maker’s 
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risk attitude under uncertainty through the utility function 
optimization.  

A detailed review of the related work on uncertainty 
analysis is provided in Section 2.1.  It is found that most of the 
exiting works only focus on generating the mean and the 
variance of a system output or the range of deviation. This is 
often not sufficient to describe the whole probabilistic 
distribution of a system output, and most of the time we do not 
know in advance what type of distribution the system output 
will follow.  The methods available for generating complete 
probabilistic distributions are often expensive to use and are not 
considered as usable tools for real engineering applications.  In 
this paper, we propose an efficient method uncertainty analysis 
based on the concept of the most probable point (MPP) that was 
originated from the field of structural reliability.  We call this 
method the most probable point based uncertainty analysis 
(MPPUA) method.  To improve the efficiency of locating a 
MPP, a novel MPP search algorithm is presented that employs 
a set of searching strategies, including evaluating derivatives to 
direct a search, tracing the MPP locus, and predicting the initial 
point for MPP search. 

This paper is organized as follows. In Section 2, the frame 
of references of our research is presented.  The concepts of the 
most probable point (MPP) are introduced. The proposed 
MPPUA method is presented in Section 3 along with the 
discussions of an MPP search algorithm and other search 
strategies. In Section 4, two examples are used to demonstrate 
the effectiveness of the proposed method.  The accuracy and 
efficiency of the MPPUA method are examined. Section 5 is the 
closure of this paper.  

 
2. RELATED WORK AND OUR TECHNOLOGY BASE 

 
2.1 Review of Related Work 

Researches on the sources of uncertainty and how to model 
them can be found in the literature (the recent references 
including Manners, 1990; Laskey, 1996; Ayyub and Chao, 
1997; Du and Chen, 1999a). The commonly used method for 
uncertainty analysis is the sensitivity based approximation 
approach that includes the worst case analysis and the moment 
matching method (Eggert, 1991; Parkinson, et al., 1993, Chen, 
et al., 1996; Du and Chen, 1999b, Du and Chen, 2000, and Du, 
et al., 2000). With the worst case analysis, all the fluctuations 
are assumed to occur simultaneously in the worst possible 
combinations and based on this assumption, the worst value of 
the system output (extreme condition) can be found by the first 
order Taylor expansion or optimization.  With the moment 
matching method, the first order moment (mean value) and the 
second order moment (standard deviation) of a system output 
are obtained.  

Reliability analysis is another class of methods that focus 
on evaluating the probability of the event that a system output is 
less or bigger than a pre-specified value. The typical methods in 
the filed of reliability analysis include FORM (first order 

second moment method) and SORM (second order reliability 
method) (Melchers, 1999).  

Compared with the preceding methods, Monte Carlo 
Simulation (MCS) is a more comprehensive method that can 
generate the cumulative distribution function (CDF) and the 
probability density function (PDF) of a system output based on 
data sampling. The shortcoming of MCS is that great 
computational effort is required for any general cases. Some 
modified MCS methods have been proposed to improve the 
computational efficiency. Among them are the importance 
sampling method (Kahn, 1956; Rubinstein, 1981), the Latin 
hypercube sampling method (Walker, 1986), the shooting 
Monte Carlo approach (Brown and Sepulveda, 1997), and the 
directional simulation (Ditlevsen, et al., 1987).  However, even 
with modifications, data sampling techniques are generally not 
affordable in the design of complex engineering systems.    

To reduce the computational effort, surrogate models that 
employ polynomial chaos expansion are proposed by some 
researchers (Isukapalli and Georgopoulos, 1998; Isukapalli, 
1999; Wang, 1999).  In Isukapalli’s work, random input 
variables are transformed into standard normal distributed 
variables and then the response surface model of the original 
model is created in the form of the Hermite-polynomial. Wang 
used the more general polynomial chaos expansion, which also 
includes the Hermite-polynomial, to build the surrogate models. 
After the surrogate models are established, MCS, design of 
experiments (DOE) (Box, 1978), or other methods are 
employed to generate the distribution of a system output based 
on the inexpensive surrogate models.  It should be noted that 
these surrogate models are generated only in the neighborhood 
of a candidate design point rather than over the whole design 
space. When the number of design options (from which the 
preferred design will be chosen) is large, a great amount work is 
required to create the surrogate models and the computational 
burden may still not be affordable. The alternative way is to 
directly create the response surface models as the functions of 
random variables and design variables over the entire design 
space (Sues, et al., 1995; Kowal and Mahadevan, 1998; Koch, 
et al., 1999; Mavris, et al., 1999). Recently, considerations of 
both the uncertainty of input variables and the uncertainty of 
model itself (model error) have been reported for 
multidisciplinary design (Gu and Renaud, 1998; Du and Chen, 
1999a).   

As mentioned in Section 1, most of the existing works on 
uncertainty analysis only focus on generating the mean and the 
variance of a system output or the range of the performance 
deviation. There is a need for developing efficient uncertainty 
analysis methods that can be used in the design of complex 
system to derive full probability distribution functions. 

 
2.2 Our Technology Base 

A generic uncertainty analysis problem is considered in 
this work. We let model inputs }.,{ 21 nxxx �=x be mutually 
independent random variables with the cumulative distribution 
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function (CDF) )( ii xF  and the probability density function 
(PDF) )( ii xf  ( ni ,1= ).  The system model )(xg  maps model 
inputs }.,{ 21 nxxx �=x  into an output y as: 

)g(y x= .              (1) 
Theoretical methods can be used to generate the PDF of 

the output y (Papoulis, 1991).  However they are difficult or 
even impossible to use for complex system behaviors. 
Simulation methods (for example, Monte Carlo method) are 
used whenever the analytical methods are not practical. But 
usually, they are not efficient. Alternatively, analytical methods, 
such as the MPP method, can be used. 

The MPP method was originally developed in the field of 
reliability analysis (Hasofer and Lind, 1974).  It requires that 
limit-state functions be defined and then the probability of the 
limit-state functions bigger or less than zero can be evaluated 
approximately.  The limit-state function is defined as: 

cgcyz −=−= )()( xx ,                          (2) 

where c is a constant. 

The MPP is formally defined in a coordinate system of an 
independent and standardized normal vector },,{ 21 nuuu �=u . 
The input variables }.,{ 21 nxxx �=x  (in the original design 
space) are transformed into the standard normal space 

},,{ 21 nuuu �=u . The most commonly used transformation is 
given by Rosenblatt (Rosenblatt, 1952) as 

)]([1
iii xFu −Φ=       ( ni  ,1= ),            (3) 

where 1−Φ  is the inverse of a normal distribution function. Eqn. 
3 stands for that the transformation maintains the CDFs being 
identical both in x space and u space (see Figure 1). 

Figure 1. The Transformation of input variables  
 
The limit-state function is now rewritten as 

cgz −= )()( uu .              (4) 
Hasofer and Lind (1974) defined β as the shortest distance 

from the origin to a point on the limit-state surface in u space 
(see Fig. 1).  Mathematically, it is a minimization problem with 
an equality constraint: 

u
U

min=β               (5) 

subject to  
0)( =− cg u .              (6) 

The solution MPPu  of this minimization problem is called 
the most probable point (MPP).   

From Fig. 2, we see that the joint probability density 
function on the limit-state surface has its highest value at the 
MPP and so the MPP has the property that in the standard 
normal space it has the highest probability of producing the 
value of limit-state function z(u) (Wu, 1990). β  is also referred 
to as the safety index in reliability analysis and the MPP 
becomes the critical design point. 

Figure 2. The MPP concept 

 
If the limit-state function z(u) is linear, the accurate 

probability estimate at the limit state is given by the equation: 

�
�
�

<Φ−
≥Φ

=<=<
5.0 if)(1

5.0 if)(
})({}0)({

P
P

cgPzP
β

β
xu        (7) 

The above equation provides an easy correspondence 
between the probability estimate and the safety index.  If z(u)  is 
nonlinear, a good approximation can still be obtained by the 
above equation, provided that the magnitude of the principal 
curvatures of the limit-state surface in the u space at the MPP is 
not too large (Mitteau, 1999). If the limit-state function is 
highly nonlinear, an alternative second-order approximation at 
the MPP can be used, which takes into account the curvature of 
the limit-state surface around the MPP (Breitung, 1984, Tvedt, 
1990).  
 
3. A MPP BASED METHOD FOR UNCERTAINTY 

ANALYSIS 
In this work, a most probable point (MPP) based 

uncertainty analysis (MPPUA) method is developed to estimate 
the probabilistic distribution of a system output.  The concept of 
the MPP is utilized to generate the cumulative distribution 
function (CDF) of the system output by output by evaluating the 
probability estimates at a serial of limit states. A novel MPP 
search algorithm is also developed to support the procedure of 
CDF generation. 
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Figure 3.  Concept of the MPPUA Method 
3.1 Generating probabilistic distribution of a system 
output 

The basic idea of the MPPUA method is to make use of the 
property of the MPP to approximate the probability output at a 
serial of limit states. As we discussed in the previous Section 
2.2, MPP has the property that in the standard normal space it 
has the highest probability of producing the value of a limit-
state function, and the information of the shortest distance can 
be used to predict the probability of limit-state function less 
than zero. This is very relevant to the definition of the CDF of a 
system output , i.e., 

})({}{)( cgPcyPcFy <=<= u ,                         (8) 
which is equivalent to 

 }0)({}0)({)( <=≤−= uu zPcgPcFy .           (9) 
The analogy is that if we could identify the MPP for a 

system output y (or g(u)) at a limit state c, this will provide us 
an estimate of the CDF of y when y = c.  For each MPP, there 
is a corresponding value of β. Based on Eqn. 9, the CDF of y at 
y = c becomes 

   
�
�
�

<Φ−
≥Φ

=<=<=
5.0 if)(1

5.0 if)(
}0)({}{)(

P
P

zPcyPcFy β
β

u .(10) 

If we could evaluate the CDF values using this way for a 
set of c values chosen in a range of system output y, then we 
will be able to obtain a (discretized) complete CDF across a 
range of y.   Since the reasonable range of a system output is 
generally not known in advance, difficulty will arise when 
choosing the set of c values (limit states) because its values 
largely depend on an application. However, there is a direct 
correspondence between c and β, where the latter can be easily 
assigned a fixed range, for example, [0, 3] or [0, 4], which 
correspond to CDF values in the range of 0.9987]  .0013,0[  and 

0.99997] ,10[3.1671 -5× (close enough to [0 1]) based on Eqn. 
10, respectively. To locate a set of MPPs at these points, we 
choose to discretize the corresponding β values into equal 
segments.  A serial of β is chosen as: 

) ,1(  max Mi
M

i ==
ββ ,             (11) 

where M is the number of points picked. 

Geometrically as shown in Figure 3, in the standard normal 
space u, we will consider a family of concentric spheres with 
radius iβ  and we call these spheres β-spheres. Corresponding 
to each β, the MPP is identified.  The limit state values c and 
the probability estimates yiF  are then determined.  The right 
side picture in Figure 3 illustrates the determination of the full 
cumulative density function based on the evaluations of a set of 
MPP. 

Since every  iβ yields two values of yiF  according to Eqn. 
10 and the origin ( 0=β ) in the standard normal space u gives 
a CDF value 0.5, the total number of yiF  and that of  iβ have 
the following relationship 

 12 += MK ,              (12) 
where K is the total number of yiF . 

Note that the MPPs are identified in the standard normal 
space u and they should be transformed into the initial x space. 
Once the x values of the MPP are identified, system output yi 
(same as the limit-state value c) can then be evaluated using the 
system function g(x).  When evaluating the values of CDF, for 
the MPP with the larger system output, we use the upper 
expression of Eqn. 10; and for the MPP with the smaller output 
value, the lower expression should be used. 

Based on the proceeding discussions, we summarize the 
procedure of generating the CDF of a system output y as 
follows: 

(1) Specify a set of safety index iβ  ( ) ,1 Mi = in the range 
[0, 3] or [0, 4]; 

(2) Calculate the corresponding CDF values using Eqn. 
10.  

(3) For a given iβ , find MPP i
MPPu  in u space (details see 

Section 3.2); 
(4) Map i

MPP
u  into x space to obtain i

MPPx  using 

)]([  ,
1

 ,
i

jMPPi
i

jMPP uFx Φ= −      ( njKi  ,1 ; ,1 == ).        (13) 
(5) Evaluate the value of a system output at a MPP by 

)( i
MPPi Fy x=  .            (14) 

Once the discretized CDF is obtained, we can then obtain 
the PDF: ) ),(( iiy yyf using 
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yf                     (15) 

 

3.2 Searching the MPP 
From the above procedure, we see that the key to generate 

the correct probabilistic distribution function is to find the right 
MPP for different iβ .  Various techniques have been proposed 
in the literature to search the MPP, such as the hypersphere 
method (Ticky, 1993), the directional cosines method (Ang and 
Tang, 1984), the advanced mean value (AMV) (Wu, et al., 
1990), the sampling-based MPP search method (Wu, 1998), 
and the optimization method.   Unfortunately, there has been no 
single search algorithm that could succeed to find the right MPP 
for all situations. As stated by Tichy (Tichy, 1993), the common 
problems are: 1) The MPP obtained appears logical, but it is 
incorrect, as the iteration leads to a local extreme of the 
transformed limit-state functions; 2) Solution does not 
converge.  For example, the search process may oscillate 
between two points. The newly developed sampling based MPP 
searching algorithm (Wu, 1998) seems to be highly robust, but 
it needs many iterations and much sampling to obtain the 
correct MPP.  

In this paper, we develop a new algorithm that uses the 
derivative information of the limit-state function to direct the 
search and traces the MPP locus step by step through the entire 
MPP search process when generating the complete CDF.  The 
algorithm is expected to be efficient and robust as it suits the 
nature of our proposed procedure in which probability levels 
are identified incrementally. Two issues are involved in the 
proposed algorithm. One is the MPP search algorithm for a 
specific iβ  and the other is the determination of the initial 
point for each search. We will discuss them in detail next. 
 
3.2.1 Searching the MPP at ββββi 

Graphically speaking, MPP is the tangent point of the 
hypersphere (called β -sphere with radius iβ ) and the limit-
state surface in the u space (see Fig. 4). The MPP search 
becomes to locate this tangent point, where the vector id  

connecting the MPP i
MPPu  and the origin o should overlap with 

the gradient )( i
MPPg u∇  of the function )(ug . In other words, 

the angle of id  and )( i
MPPg u∇  should be zero, expressed as  

0
)(

)(
cos 1 =

∇⋅

∇•
= −

i
MPP

i

i
MPP

i
i

g

g

ud

ud
α ,           (16) 

where 
i
MPP

n

i
MPP u

g
u
g

u
gg

u

uuuu
�
�
�

�
�
� ∂∂∂=∇ )(, ,)( ,)()(

21

� .          (17) 

The procedure that we developed to locate a MPP on the 
iβ  sphere is as follows: 

At the current point on iβ  sphere, calculate the gradient 
g∇ of the limit-state function and the vector d that connects the 

origin and the current point. If the angle between g∇  and d is 
smaller than the stopping criterion (for instance, 0.1 degrees), 
we accept the current point as an MPP.  If the angle is larger, a 
new search direction which is between g∇  and d and on the 
plane of g∇  and d is chosen. The intersection of this new 
direction and the iβ  sphere then becomes our updated point 
(new current point). Repeating the procedure until the angle 
reduces to the accepted value. If a good initial point is chosen, 
this iterative process will converge quickly. This will be 
addressed in the next section. 

Figure 4. Overlapping Condition at MPP 
 
3.2.2 Tracing the MPP locus and predicting the initial 
search point 

A good starting point of MPP search will lead towards the 
right point in an efficient manner.  We employ the strategy of 
tracing MPP locus by increasing the radius of β-sphere 
gradually from 0 to its upper limit 3 or 4. In our proposed 
method, the probability levels are identified incrementally to 
generate the complete CDF of a system output. Utilizing this 
feature, the MPPs identified for the smaller βs are used to 
predict the initial search point when searching the MPP for a 
larger β. The procedure is geometrically demonstrated in Fig. 5. 
The origin o is the first MPP 0

MPPu . Along the gradient 
)( 0

MPPg u∇ , a point 1
0u  on the 1β  is found, which is used as the 

initial point for searching MPP 1
MPPu  following the procedure 

developed in previous section. After the two MPPs 0
MPPu  and 

1
MPPu  are available, we use the direction from 0

MPPu  to 1
MPPu  to 

predict the initial point 2
0u  on the next 2β  sphere.  Once the 

MPP 2
MPPu  is obtained, we then use the three MPPs 0

MPPu , 1
MPPu  

and 2
MPPu  to predict the next MPP. For three successive MPPs, 

a quadratic curve can be used to approximate the MPP locus, 
which is shown in Fig. 5 entitled by “predicting curve”.  The 
common point of the predicting curve and 3β  sphere is the 
predicted initial point for 3

MPPu . Analogously, the initial points 
on the next iβ  sphere can be obtained by the quadratic 

i
MPPuid

)( i
MPPg u∇

u2

u1 

Limit-state surface 
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predicting curve fitted by the three previous MPPs 3−i
MPPu , 2−i

MPPu  
and 1−i

MPPu . The reason to use the quadratic approximation is that 
it can give us a good prediction of the next MPP with less 
computation than the higher order polynomials. 

It is found that we have much better chance to find the 
correct MPP on a smaller β-sphere with the aid of the MPP 
search strategy in section 3.2.1.  Our proposed method allows 
us to locate the MPPs for small β-spheres and then use them to 
predict the initial search point for the MPP on the next β-sphere 
with increased radius.  This helps us to locate the right MPPs 
for larger β-spheres. The radius of the β-spheres are gradually 
increased and the trace of the MPPs is often referred to the 
MPP locus (the dotted curve in Fig. 5).  The procedure of 
selecting the initial search point (Section 3.2.2) and the MPP 
search algorithm (Section 3.2.1) are integrated, which leads to 
an efficient and robust MPP search procedure.   

Figure 5. Tracing MPP Locus 
 
4. EXAMPLES 

Two examples are used to demonstrate the effectiveness of 
the proposed method. Example 1 is a mathematical example and 
example 2 is a real engineering problem. The CDFs and PDFs 
of the system output generated by the proposed method are 
compared with those obtained from the MCS in which very 
large number of simulations is considered.   

 
4.1 Example 1 – A Mathematical Example 

 Two design variables },{ 21 xx=x  are considered for this 

example. 1x  is normally distributed with mean as 100 and 

standard deviation as 20; 2x  is a lognormal random variable 
with mean as 15 and standard deviation as 14. The system 
function is 

10000/)22()( 1
2

2
1212

3
1

xexxxxxxg −−−−=x .          (18) 

CDF values obtained by the MPPUA and the MCS are 
compared in Table 1. The number of simulations of MCS is 107.  
We notice that the two sets of CDF values are very close to 
each other.  Figs. 6 provides graphical comparisons of these two 
CDF curves.  From Figure 6, we note that the two CDF curves 
obtained by the MPPUA and MCS almost overlap with each 
other.  From Fig. 7, it is observed that the system output (from 
MCS) is not symmetrically distributed and this character is well 
captured by PDF curve generated using the proposed method. 
The two PDF curves are also close except there is a slight 
difference at the pick of the curves.  

Table 1. CDF results of example 1  
y CDF by MPPUA CDF by MCS β 

18841.07 0.9987 0.9988 3 
10842.49 0.9918 0.9925 2.4 
6197.639 0.9641 0.9664 1.8 
3513.999 0.8849 0.8912 1.2 
1973.093 0.7257 0.7374 0.6 
1095.363 0.5 0.5155 0 
598.3986 0.2743 0.2888 0.6 
319.4687 0.1151 0.1244 1.2 
165.1907 0.0359 0.0402 1.8 
81.2578 0.0082 0.0096 2.4 

36.58 0.0013 0.0016 3 

Figure 6.  Example 1 – CDF 

Figure 7.  Example 1 – PDF 

1
0u

2
0u

u1 

u2 

3
MPPu2

MPPu

3
0u

1
MPPu

0
MPPu 1β

2β
3β

limit-state surface 

)( 1
0ug∇

2
0d

predicting curve 
MPP locus 

0 5000 10000 15000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

C
D
F

MPPAU
MCS

0 5000 10000 15000
0

1

2

3

4

5

6

7
x 10

-4

y

P
D
F

MPPAU
MCS



 

  Copyright © 2000 by ASME 7

4.2 Example 2 – Pratt & Whitney (PW) Engine Design 
The PW engine design problem is used in this study to 

illustrate the applicability of the proposed MPPUA for 
problems that are in a complex domain and taking a lot of 
computational resources.  The problem statement of the PW 
engine design problem is provided in (Varadarajan, et al., 
2000). A total of eight continuous design variables are 
considered. They are the Fan Pressure Ratio (FPR), the Exhaust 
Jet Velocity Ratio (VJR), the Turbine Inlet Temperature or the 
Combustor Exit temperature (CET), the High Compressor 
Pressure Ratio (HPCPR), the Low Compressor Pressure Ratio 
(LPCPR), High Turbine Compressor Efficiency (EHPC), High 
Turbine Efficiency (EHPT), and Low Turbine Efficiency 
(ELPT). The distributions of these design variables are listed in 
Table 2.  

 
Table 2 Distributions of design variables in engine design 

 Mean Standard Deviation Distribution type 
FPR 0.8 0.1 Lognormal 
VJR 2600 300 Lognormal 
CET 15 1.5 Lognormal 

HPCPR 3 0.3 Lognormal 
LPCPR 1.45 0.1 Weibull 
EHPC 0.89 0.08 Weibull 
EHPT 0.93 0.01 Weibull 
ELPT 0.805 0.01 Weibull 

 
The system outputs are Overall Pressure Ratio (OPR), Fan 

Diameter (FANDIA), and HPTPR (High Turbine Pressure 
Ratio), all of which are nonlinear and complicated functions 
evaluated by a thermal analysis program called SOAPP 
(Varadarajan, et al., 2000). 

Figure 8.  Example 2 – CDF of OPR 
 
Figs. 8 and 9 indicate that the MPPUA method generates 

excellent estimations of CDF and PDF for OPR when the 
results from MCS are taken as a reference (simulation number is 
107). The MPPUA method also generates good estimations of 
CDF and PDF for FANDIA even though there exist some slight 

differences (see Figs. 10 and 11).  However for HPTPR, the 
estimated CDF and PDF curves are slightly shifted to the right 
of those obtained from MCS (see Figs. 12 and 13). This 
indicates that the model function HPTPR may have large 
curvatures at MPPs.  

 
 

Figure 9.  Example 2 – PDF of OPR 

Figure 10.  Example 2 – CDF of FANDIA 

 
Figure 11.  Example 2 – PDF of FANDIA 
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Figure 12.  Example 2 – CDF of HPTPR 

 
Figure 13.  Example 2 – PDF of HPTPR 

 
The total number of the model function evaluations is 

320~500 for OPR, FANDIA and HPTPR . If the same number 
is taken for MCS, the results from MCS will be much less 
accurate than the ones from the proposed approach, especially 
in the tails of the PDF. 

 
4.3 Discussions 

Based on the two examples, we note that the MPPUA 
method provides us very good estimations of the probabilistic 
distribution of a system output. We comment on its performance 
in the following several categories: 

1) Efficiency: The efficiency of the proposed method 
depends on the speed of MPP search. Only two or three 
iterations are needed to locate the MPP at each β for the above 
two examples. This means that after the initial point is 
identified, only two or three points on the β-sphere need to be 
updated before the MPP is located.  Our proposed search 
strategy (section 3.2.1) and the method of selecting the initial 
search point along the MPP locus (section 3.2.2) have 
significantly enhanced the performance of utilizing the MPP 
concept. 

2) Robustness: Tracing the MPP locus is very helpful for 
the convergence of MPP search when dealing with different 
types of system behavior because it always gives us good initial 
search points to start with. As discussed in section 3.2.2, we 
start MPP search on the smallest β-sphere. It is easy to find a 
correct MPP on a small β-sphere with the aid of the MPP 
search strategy.  The initial point for the MPP search on the 
larger β-sphere is predicted using the MPPs for smaller β-
spheres.  Good starting points help to converge to the right 
MPP points in an efficient manner.  

3) Simplicity: The MPPUA method is easy to be 
computerized. 

In spite of the advantages listed, we should keep in mind 
that our proposed method is only an approximation method for 
predicting the probabilistic distributions in a certain situations. 
Its accuracy depends on many issues such as the linearity of the 
transformed system function at the MPP, the normalization of 
the non-normal random variables, the stopping criteria of the 
MPP search, etc.  The linearity is the key factor that affects the 
accuracy. Highly nonlinear model function (large magnitude of 
the principal curvatures at MPP in u space) may result in 
significant errors of CDF estimation. To improve the accuracy 
under this situation, the second-order approximation to the 
probability })({ iygP <x  can be used to fit the model function 
at the MPP. Usually a paraboloid or a sphere function (Fiessler 
et al., 1979; Hohenbichler, et al., 1987) is used.  The simplest of 
these methods, based on a paraboloid fitting, is the asymptotic 
formulation (Breitung, 1984): 

∏
−

=

−+−Φ=≤
1

1

2/1)1()(])([
n

j
j

ii
iygP ρββx .          (19) 

where jρ  denote the main curvatures of the model function or 
limit-state function at the MPP.  When there exist more than 
one local minimal distance points (multiple MPPs), an 
approximation of the solution can be obtained by fitting planes 
or paraboloid surfaces at all these points (Kiureghian, 1987). 
Obviously, the improvement of accuracy will involve the 
evaluations of second derivatives of a function. To avoid this, a 
MPP based importance sampling method can be used.  This 
method is implemented by sampling around the MPP rather 
than over the whole random space.  Therefore the number of 
simulation is much less than that of the general MCS. This 
method is fully documented in Du and Chen, 1999b. 

While the accuracy of the MPPUA method mainly depends 
on the features of a system model, its efficiency relies on the 
problem dimension (the number of random variables). Since the 
MPPUA method is a gradient based method and generally the 
gradient is evaluated by numerical methods, the number of 
function evaluations will be approximately equal to the number 
of random design variables times the number of derivative 
updates. Therefore, when the number of random variables is 
very large (for example, bigger than 50), the advantage of the 
MPPDG method over simulation methods may diminish. In this 
situation, MCS may be more efficient to use than the MPPUA 
method.  To deal with large-scale problems, one solution is to 
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use the design of experiments techniques to screen out 
unimportant variables (Box, et al., 1978) and then to implement 
the MPPUA method in the reduced design space. 

 
5. CLOSURE 

Adopting probabilistic model in engineering design is very 
important for designers to make intelligent and reliable 
decisions under uncertainty. Uncertainty analysis is required to 
propagate the effect of uncertainty on a system output. The 
research of this paper is focused on how to capture the complete 
probabilistic distribution of a system output with the existence 
of uncertainty in system input. To accomplish this goal, a MPP 
based uncertainty analysis method is proposed.  The method 
utilizes the concept of MPP to generate the cumulative 
distribution function (CDF) of a system output with any types 
of continuous distributions for input random variables by 
evaluating probability estimate at the a serial of limit states. The 
probability density function (PDF) can then be estimated by the 
differential of CDF.  A novel MPP search algorithm is 
presented that employs a set of searching strategies, including 
adjusting search directions based on derivatives, tracing the 
MPP locus, and predicting the initial point for MPP search.  
With the capability of generating the probabilistic distribution 
of a system output, the proposed method can serve as a useful 
tool in decision making under uncertainty.  In addition to utility 
function optimization, it can also be used in many forms of 
probabilistic design, such as robust design, stochastic 
optimization, and reliability based design.  The proposed 
method can be used to assist the evaluation of mean and 
variance (both are major concerns in robust design), the 
probability of success (such as the limit-state evaluation in 
reliability analysis), and the feasibility robustness (if the system 
output is considered as the constraint).   Our future study will be 
towards integrating the proposed uncertainty analysis method 
with a decision making framework. 
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